Citation: | ZHANG Ying, WANG Zi-xing, ZHOU Jun-peng, LIU Ai-ling. EXPERIMENTAL STUDY ON ACOUSTIC EMISSION QUANTITATIVE ASSESSMENT OF Q345 SPECIMEN’S MESOMECHANICAL DAMAGE[J]. Engineering Mechanics, 2014, 31(4): 40-45,60. DOI: 10.6052/j.issn.1000-4750.2012.11.0866 |
[1] |
王慧晶, 林哲, 赵德有. 声发射技术在工程结构疲劳监测中的应用和展望[J]. 振动与冲击, 2007, 26(6): 157―191.
|
[2] |
Wang Huijing, Lin Zhe, Zhao Deyou. Application and prospect of acoustic emission technology in engineering structural damage monitoring [J]. Journal of Vibration and Shock, 2007, 26(6): 157―191. (in Chinese)
|
[3] |
[2]Lee D E, Hwang I, Valente C M O, et al. Precision manufacturing process monitoring with acoustic emission [J]. International Journal of Machine Tools and Manufacture, 2006, 46(2): 176―188.
|
[4] |
[3]Ennaceur C, Laksimi A, Herve C, et al. Monitoring crack growth in pressure vessel steel by the acoustic emission technique and the method of potential difference [J]. International Journal of Pressure Vessels and Piping, 2006, 83(1): 197―204.
|
[5] |
[4]Gurson A L. Continuum theory of ductile rupture by void nucleation an growth: Part I —— yield criteria and flow rules for porous ductile media [J]. Transactions of ASME: Journal of Engineering Materials and Technology, 1977, 8(1): 1―15.
|
[6] |
[5]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar [J]. Acta Metal, 1984, 32(1): 157―169.
|
[7] |
[6]Needleman A, Tvergaard V. Numerical modeling of the ductile-brittle transition [J]. International Journal of Fracture, 2000, 101(1/2): 73―97.
|
[8] |
[7]Abbasi M, Bagheri B, Ketabchi M, Haghshenas D F. Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank [J]. Computational Materials Science, 2012, 53(12): 368―376.
|
[9] |
[8]Chae D, Koss D A. Damage accumulation and failure of HS-LA-100 steel [J]. Materials Science and Engineering, 2004, A366(2): 299―309.
|
[10] |
[9]郑长卿, 周利, 张克实. 金属韧性破坏的细观力学及其研究应用[M]. 北京: 国防工业出版社, 1995: 35―50.
|
[11] |
Zheng Changqing, Zhou Li, Zhang Keshi. Micromechanical research and application for the ductile fracture of metal [M]. Beijing: National Defense Industry Press, 1995: 35―50. (in Chinese)
|
[12] |
[10]Kim J, Gao Xiaosheng, Srivat Sant. Modeling of void growth in ductile solids effects of stress triaxiality and initial porosity [J]. Engineering Fracture Mechanics, 2004, 71(6): 379―400.
|
[13] |
[11]Tang C A, Xu X H. Evolution and propagation of material defects and Kaiser effect function [J]. Journal of Seismological Research, 1990, 13(2): 203―213.
|
[14] |
[12]龙宪海, 阳能军, 王汉功. 基于声发射技术的30CrMnSi钢断裂机理研究[J]. 材料工程, 2011, 20(1): 17―22.
|
[15] |
Long Xianhai, Yang Nengjun, Wang Hangong. Fracture mechanism for 30CrMnSi steel based on acoustic emission technology [J] Materials Engineering, 2011, 20(1): 17―22. (in Chinese)
|
[16] |
[13]朱宏平, 徐文胜, 陈晓强, 夏勇. 利用声发射信号与速率过程理论对混凝土损伤进行定量评估[J]. 工程力学, 2008, 25(1): 186―191.
|
[17] |
Zhu Hongping, Xu Wensheng, Chen Xiaoqiang, Xia Yong. Quantitative concrete-damage evaluation by acoustic emission information and rate-process theory [J] Engineering Mechanics, 2008, 25(1): 186―191. (in Chinese)
|
[18] |
[14]许金泉. 材料强度学[M]. 上海: 上海交通大学出版社, 2009: 133―135.
|
[19] |
Xu Jinquan. Strength of materials science [M]. Shanghai: Shanghai Jiaotong University Press, 2009: 133―135. (in Chinese)
|