Citation: | LIN Kai-qi, WU Su-jing, ZHENG Jun-hao, LI Yi, CHEN Su-wen, LU Xin-zheng. RESEARCH ON THE COLLAPSE PREVENTION OF BUILDINGS UNDER EARTHQUAKE DISASTERS AND ACCIDENTAL EVENTS: PROGRESS AND PROSPECT[J]. Engineering Mechanics, 2025, 42(4): 1-24. DOI: 10.6052/j.issn.1000-4750.2024.12.0959 |
Buildings serve as the principal component of urban safety and the carrier of urban functions. With the development of economy, various kinds of buildings (e.g., public, commercial, etc.) have been built to satisfy the demands of social production, of human living, and so forth. The collapse of buildings initiated by earthquake disasters and accidental events will result in severe casualties, economic loss, and adverse social repercussions. In recent years, various collapse incidents have continued to occur, revealing numerous hidden dangers in the collapse resistance of existing buildings. Hence, more and more scholars start to pay attention to the collapse of building structures. Via theory, experiment, and numerical simulation, significant progress has been achieved in the area of collapse resistance of building structures. The impact and challenges of the Wenchuan earthquake on the research on structural resistance against earthquake-induced collapse and seismic design codes are first reviewed. The development of structural anti-collapse design is teased out, and the inspiration and impact of recent collapse events and extreme earthquakes on existing design methods and theory are discussed. A literature review is thusly conducted to discuss the development and key scientific issues in the field of anti-collapse research. Current status of structural anti-collapse research is summarized from the following aspects, including building collapse computation models, design theory, anti-collapse performance requirements/acceptance levels, collapse research on different types of buildings, and building codes for anti-collapse design. Summarized are future directions for the development of anti-collapse research and engineering practices, including the evolution of anti-collapse design theory for new structures, the innovation in computational models, the development of collapse models under complex loads, and the refinement of standards and specifications.
[1] |
PEARSON C, DELATTE N. Ronan point apartment tower collapse and its effect on building codes [J]. Journal of Performance of Constructed Facilities, 2005, 19(2): 172 − 177. doi: 10.1061/(ASCE)0887-3828(2005)19:2(172)
|
[2] |
SOZEN M A, THORNTON C H, CORLEY W G, et al. The Oklahoma City bombing: Structure and mechanisms of the Murrah Building [J]. Journal of Performance of Constructed Facilities, 1998, 12(3): 120 − 136. doi: 10.1061/(ASCE)0887-3828(1998)12:3(120)
|
[3] |
SHYAM-SUNDER S, GANN R G, GROSSHANDLER W L, et al. Final report on the collapse of World Trade Center Building 7, federal building and fire safety investigation of the World Trade Center disaster (NIST NCSTAR 1A) [R]. Gaithersburg: National Institute of Standards and Technology, 2008: 1 − 72.
|
[4] |
岳清瑞, 陆新征, 许镇, 等. 城市安全“风险源-承灾体-减灾力”理论框架[J]. 工程力学, doi: 10.6052/j.issn.1000-4750.2023.08.0602.
YUE Qingrui, LU Xinzheng, XU Zhen, et al. The "risk source-risk exposure-mitigation force" theoretical framework for urban safety [J]. Engineering Mechanics, doi: 10.6052/j.issn.1000-4750.2023.08.0602. (in Chinese)
|
[5] |
维基百科. 中国大陆地震列表[EB/OL]. https://en.wikipedia.org/wiki/List_of_earthquakes_in_China, 2025-02-05.
Wikipedia. List of earthquakes in China [EB/OL]. https://en.wikipedia.org/wiki/List_of_earthquakes_in_China, 2025-02-05. (in Chinese)
|
[6] |
高孟潭, 周本刚, 潘华. “5·12”汶川特大地震灾害特点及其防灾启示[J]. 震灾防御技术, 2008, 3(3): 209 − 215. doi: 10.3969/j.issn.1673-5722.2008.03.001
GAO Mengtan, ZHOU Bengang, PAN Hua. Damage characteristics and enlightenment of disaster prevention of “5·12” Wenchuan earthquake [J]. Technology for Earthquake Disaster Prevention, 2008, 3(3): 209 − 215. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.03.001
|
[7] |
清华大学土木工程结构专家组, 西南交通大学土木工程结构专家组, 北京交通大学土木工程结构专家组. 汶川地震建筑震害分析[J]. 建筑结构学报, 2008, 29(4): 1 − 9.
Civil and Structural Groups of Tsinghua University, Xi’nan Jiaotong University, Beijing Jiaotong University. Analysis on seismic damage of buildings in the Wenchuan earthquake [J]. Journal of Building Structures, 2008, 29(4): 1 − 9. (in Chinese)
|
[8] |
王成. 玉树4·14地震建筑结构震害调查与分析[J]. 建筑结构, 2010, 40(8): 106 − 109.
WANG Cheng. Investigation and analysis of building structure damage in Yushu earthquake [J]. Building Structure, 2010, 40(8): 106 − 109. (in Chinese)
|
[9] |
卢啸, 陆新征, 张万开, 等. 特大地震下超高层建筑的倒塌模拟[J]. 中国科学: 技术科学, 2011, 41(11): 1405 − 1416.
LU Xiao, LU Xinzheng, ZHANG Wankai, et al. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes [J]. Science China Technological Sciences, 2011, 54(10): 2549 − 2560.
|
[10] |
卢啸. 超高巨柱 − 核心筒 − 伸臂结构地震灾变及抗震性能研究[D]. 北京: 清华大学, 2013.
LU Xiao. Study on the collapse simulation and seismic performance of super tall mega column-core tube-outrigger buildings [D]. Beijing: Tsinghua University, 2013. (in Chinese)
|
[11] |
陆新征, 林旭川, 叶列平, 等. 地震下高层建筑连续倒塌数值模型研究[J]. 工程力学, 2010, 27(11): 64 − 70.
LU Xinzheng, LIN Xuchuan, YE Lieping, et al. Numerical models for earthquake induced progressive collapse of high-rise buildings [J]. Engineering Mechanics, 2010, 27(11): 64 − 70. (in Chinese)
|
[12] |
陆新征, 杨蔚彪, 卢啸, 等. 倒塌分析在某500 m级超高层建筑抗震设计中的应用[J]. 建筑结构, 2015, 45(23): 91 − 97.
LU Xinzheng, YANG Weibiao, LU Xiao, et al. Application of collapse analysis in seismic design of a super-tall building over 500 m [J]. Building Structure, 2015, 45(23): 91 − 97. (in Chinese)
|
[13] |
季静, 赵书宁, 韩小雷, 等. 复杂高层建筑的模拟地震振动台试验[J]. 华南理工大学学报(自然科学版), 2007, 35(3): 83 − 89.
JI Jing, ZHAO Shuning, HAN Xiaolei, et al. Simulated earthquake investigation of complex high-rise building by shaking-table test [J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(3): 83 − 89. (in Chinese)
|
[14] |
解琳琳. 巨柱 − 核心筒 − 伸臂超高层结构大震功能可恢复设计方法[D]. 北京: 清华大学, 2016.
XIE Linlin. Resilience-based design method for super tall mega column-core tube-outrigger buildings under maximum considered earthquake [D]. Beijing: Tsinghua University, 2016. (in Chinese)
|
[15] |
蔡建国, 王蜂岚, 冯健. 大跨空间结构抗连续性倒塌概念设计[J]. 建筑结构学报, 2010, 31(增刊1): 283 − 287.
CAI Jianguo, WANG Fenglan, FENG Jian. Concept design of progressive collapse for long-span space structures [J]. Journal of Building Structures, 2010, 31(Suppl 1): 283 − 287. (in Chinese)
|
[16] |
蔡建国, 王蜂岚, 冯健, 等. 大跨空间结构连续倒塌分析若干问题探讨[J]. 工程力学, 2012, 29(3): 143 − 149.
CAI Jianguo, WANG Fenglan, FENG Jian, et al. Discussion on the progressive collapse analysis of long-span space structures [J]. Engineering Mechanics, 2012, 29(3): 143 − 149. (in Chinese)
|
[17] |
赵宪忠, 闫伸, 陈以一. 大跨度空间结构连续性倒塌研究方法与现状[J]. 建筑结构学报, 2013, 34(4): 1 − 14.
ZHAO Xianzhong, YAN Shen, CHEN Yiyi. A review on progressive collapse study for large-span space structures [J]. Journal of Building Structures, 2013, 34(4): 1 − 14. (in Chinese)
|
[18] |
赵广坡, 肖克艰, 冯远, 等. 成都双流国际机场T2航站楼大厅陆侧大跨钢结构抗连续倒塌分析[J]. 建筑结构, 2010, 40(9): 27 − 30, 61.
ZHAO Guangpo, XIAO Kejian, FENG Yuan, et al. Progressive collapse analysis on the large span steel structure of Chengdu Shuangliu International Airport T2 Terminal Building [J]. Building Structure, 2010, 40(9): 27 − 30, 61. (in Chinese)
|
[19] |
王开强, 李国强. 美国建筑连续性倒塌设计标准的现状[J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 513 − 519.
WANG Kaiqiang, LI Guoqiang. Development of American building progressive collapse design criteria [J]. Journal of PLA University of Science and Technology, 2007, 8(5): 513 − 519. (in Chinese)
|
[20] |
姜健, 李国强. 建筑钢结构抗连续性倒塌各国规范设计及分析[J]. 解放军理工大学学报(自然科学版), 2014, 15(6): 513 − 519.
JIANG Jian, LI Guoqiang. Design method and analysis of national standards for steel structures against progressive collapse [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2014, 15(6): 513 − 519. (in Chinese)
|
[21] |
ADAM J M, PARISI F, SAGASETA J, et al. Research and practice on progressive collapse and robustness of building structures in the 21st century [J]. Engineering Structures, 2018, 173: 122 − 149. doi: 10.1016/j.engstruct.2018.06.082
|
[22] |
UFC 4-023-03, Design of buildings to resist progressive collapse [S]. Washington, DC: US Department of Defense (DoD), 2005.
|
[23] |
UFC 4-023-03, Design of buildings to resist progressive collapse [S]. Washington, DC: US Department of Defense (DoD), 2009.
|
[24] |
UFC 4-023-03, Design of buildings to resist progressive collapse [S]. Washington, DC: US Department of Defense (DoD), 2013.
|
[25] |
UFC 4-023-03, Design of buildings to resist progressive collapse [S]. Washington, DC: US Department of Defense (DoD), 2016.
|
[26] |
GSA 2003, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects [S]. Washington, DC: US General Services Administration (GSA), 2003.
|
[27] |
GSA 2013, Alternate path analysis and design guidelines for progressive collapse resistance [S]. Washington, DC: US General Services Administration (GSA), 2013.
|
[28] |
GSA 2016, Alternate path analysis and design guidelines for progressive collapse resistance [S]. Washington, DC: US General Services Administration (GSA), 2016.
|
[29] |
BS EN 1991-1-7: 2006, Eurocode 1: Actions on structures - Part 1-7: General actions - Accidental actions [S]. Brussels: European Committee for Standardization, 2006.
|
[30] |
陈肇元, 李维宜. 室内燃气爆炸与砖混房屋设计对策[J]. 防护工程, 1993, 19(2): 1 − 8.
CHEN Zhaoyuan, LI Weiyi. Study on the structure failure of the masonry buildings under the flammable gas explosion [J]. Protective Engineering, 1993, 19(2): 1 − 8. (in Chinese)
|
[31] |
郭文军, 江见鲸. 城市燃气爆炸事故及其防治对策[J]. 煤气与热力, 1998, 18(3): 41 − 43. doi: 10.3969/j.issn.1000-4416.1998.03.014
GUO Wenjun, JIANG Jianjing. Urban gas explosion hazards analysis and prevention [J]. Gas & Heat, 1998, 18(3): 41 − 43. (in Chinese) doi: 10.3969/j.issn.1000-4416.1998.03.014
|
[32] |
郭文军, 江见鲸, 崔京浩. 民用建筑结构燃爆事故及防灾措施[J]. 灾害学, 1999, 14(3): 79 − 82. doi: 10.3969/j.issn.1000-811X.1999.03.021
GUO Wenjun, JIANG Jianjing, CUI Jinghao. Domestic combustion-gas blast accidents and disaster-prevention measures in civil structures [J]. Journal of Catastrophology, 1999, 14(3): 79 − 82. (in Chinese) doi: 10.3969/j.issn.1000-811X.1999.03.021
|
[33] |
唐楠. 尘埃并未落定——反思石家庄“3·16”特大爆炸案[J]. 人民公安, 2001(10): 12 − 16.
TANG Nan. The dust has yet to settle - A reflection on the “3·16” major explosion incident in Shijiazhuang [J]. People's Police, 2001(10): 12 − 16. (in Chinese)
|
[34] |
刘树成, 张国强, 邴丕忠. 城市燃气事故原因透析[J]. 城市燃气, 2007(5): 14 − 16.
LIU Shucheng, ZHANG Guoqiang, BING Pizhong. Analysis of causes for urban gas accidents [J]. Urban Gas, 2007(5): 14 − 16. (in Chinese)
|
[35] |
GB/T 50010−2010, 混凝土结构设计标准 [S]. 北京: 中国建筑工业出版社, 2011.
GB/T 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
|
[36] |
JGJ 3−2010, 高层建筑混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2011.
JGJ 3−2010, Technical specification for concrete structures of tall building [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
|
[37] |
CECS 392: 2014, 建筑结构抗倒塌设计规范 [S]. 北京: 中国计划出版社, 2015.
CECS 392: 2014, Code for anti-collapse design of building structures [S]. Beijing: China Planning Press, 2015. (in Chinese)
|
[38] |
施炜, 叶列平, 陆新征, 等. 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(3): 41 − 48, 68.
SHI Wei, YE Lieping, LU Xinzheng, et al. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels [J]. Engineering Mechanics, 2011, 28(3): 41 − 48, 68. (in Chinese)
|
[39] |
GB 50011−2001, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2004.
GB 50011−2001, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)
|
[40] |
叶列平, 曲哲, 陆新征, 等. 提高建筑结构抗地震倒塌能力的设计思想与方法[J]. 建筑结构学报, 2008, 29(4): 42 − 50. doi: 10.3321/j.issn:1000-6869.2008.04.006
YE Lieping, QU Zhe, LU Xinzheng, et al. Collapse prevention of building structures: A lesson from the Wenchuan earthquake [J]. Journal of Building Structures, 2008, 29(4): 42 − 50. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.04.006
|
[41] |
叶列平, 曲哲, 马千里, 等. 从汶川地震框架结构震害谈“强柱弱梁”屈服机制的实现[J]. 建筑结构, 2008, 38(11): 52 − 59, 67.
YE Lieping, QU Zhe, MA Qianli, et al. Study on ensuring the strong column-weak beam mechanism for RC frames based on the damage analysis in the Wenchuan earthquake [J]. Building Structure, 2008, 38(11): 52 − 59, 67. (in Chinese)
|
[42] |
林旭川, 潘鹏, 叶列平, 等. 汶川地震中典型RC框架结构的震害仿真与分析[J]. 土木工程学报, 2009, 42(5): 13 − 20.
LIN Xuchuan, PAN Peng, YE Lieping, et al. Analysis of the damage mechanism of a typical RC frame in Wenchuan Earthquake [J]. China Civil Engineering Journal, 2009, 42(5): 13 − 20. (in Chinese)
|
[43] |
叶列平, 陆新征, 赵世春, 等. 框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析[J]. 建筑结构学报, 2009, 30(6): 67 − 76.
YE Lieping, LU Xinzheng, ZHAO Shichun, et al. Seismic collapse resistance of RC frame structures - Case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan earthquake [J]. Journal of Building Structures, 2009, 30(6): 67 − 76. (in Chinese)
|
[44] |
ATC-63, Quantification of building seismic performance factors [S]. California: Applied Technology Council, 2009.
|
[45] |
唐代远, 陆新征, 叶列平, 等. 柱轴压比对我国RC框架结构抗地震倒塌能力的影响[J]. 工程抗震与加固改造, 2010, 32(5): 26 − 35. doi: 10.3969/j.issn.1002-8412.2010.05.005
TANG Daiyuan, LU Xinzheng, YE Lieping, et al. Influence of axial compression ratio to the seismic collapse resistance of RC frame structures [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(5): 26 − 35. (in Chinese) doi: 10.3969/j.issn.1002-8412.2010.05.005
|
[46] |
张鹏程, 袁兴仁, 林树枝, 等. 翼墙在中小学校舍抗震加固中的应用[J]. 建筑结构, 2010, 40(增刊2): 47 − 50.
ZHANG Pengcheng, YUAN Xingren, LIN Shuzhi, et al. Application of wing-wall in seismic strengthening of school buildings [J]. Building Structure, 2010, 40(Suppl 2): 47 − 50. (in Chinese)
|
[47] |
张令心, 王财权, 刘洁平. 翼墙加固方法对框架结构抗震性能的影响分析[J]. 土木工程学报, 2012, 45(增刊2): 16 − 21.
ZHANG Lingxin, WANG Caiquan, LIU Jieping. Analysis of the influence on structural seismic capability by wing wall strengthening method [J]. China Civil Engineering Journal, 2012, 45(Suppl 2): 16 − 21. (in Chinese)
|
[48] |
杨帆, 郑文忠, 王英. 后置混凝土翼墙加固框架角柱抗震性能试验[J]. 哈尔滨工业大学学报, 2015, 47(12): 21 − 25. doi: 10.11918/j.issn.0367-6234.2015.12.004
YANG Fan, ZHENG Wenzhong, WANG Ying. Post-build concrete wing wall reinforce frame corner column seismic performance experimental [J]. Journal of Harbin Institute of Technology, 2015, 47(12): 21 − 25. (in Chinese) doi: 10.11918/j.issn.0367-6234.2015.12.004
|
[49] |
杨伟松, 郭迅, 许卫晓, 等. 增设翼墙RC框架结构的抗震性能研究[J]. 振动与冲击, 2015, 34(24): 144 − 152.
YANG Weisong, GUO Xun, XU Weixiao, et al. Seismic behaviors of RC frames retrofitted with wing walls [J]. Journal of Vibration and Shock, 2015, 34(24): 144 − 152. (in Chinese)
|
[50] |
杨伟松, 郭迅, 许卫晓, 等. 翼墙-框架结构振动台试验研究及有限元分析[J]. 建筑结构学报, 2015, 36(2): 96 − 103. doi: 10.14006/j.jzjgxb.2015.02.012
YANG Weisong, GUO Xun, XU Weixiao, et al. Shaking table test and finite element analysis of wing wall-frame structure [J]. Journal of Building Structures, 2015, 36(2): 96 − 103. (in Chinese) doi: 10.14006/j.jzjgxb.2015.02.012
|
[51] |
周云, 彭水淋, 郭阳照, 等. 提高框架填充墙结构抗震性能的新途径和新方法[J]. 防灾减灾工程学报, 2011, 31(5): 469 − 476. doi: 10.3969/j.issn.1672-2132.2011.05.001
ZHOU Yun, PENG Shuilin, GUO Yangzhao, et al. New ways and methods to improve the seismic performance of frame structures with infilled walls [J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(5): 469 − 476. (in Chinese) doi: 10.3969/j.issn.1672-2132.2011.05.001
|
[52] |
周云, 郭阳照, 杨冠男, 等. 阻尼砌体填充墙框架结构抗震性能试验研究[J]. 建筑结构学报, 2013, 34(7): 89 − 96.
ZHOU Yun, GUO Yangzhao, YANG Guannan, et al. Experimental study on seismic behavior of frame structure with damped infill wall [J]. Journal of Building Structures, 2013, 34(7): 89 − 96. (in Chinese)
|
[53] |
周晓洁, 李忠献, 续丹丹, 等. 柔性连接填充墙框架结构抗震性能试验[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(2): 155 − 166.
ZHOU Xiaojie, LI Zhongxian, XU Dandan, et al. Experiment on seismic behavior of flexible connection masonry infilled frame structure [J]. Journal of Tianjin University (Science and Technology), 2015, 48(2): 155 − 166. (in Chinese)
|
[54] |
王亚勇. 汶川地震建筑震害启示——抗震概念设计[J]. 建筑结构学报, 2008, 29(4): 20 − 25.
WANG Yayong. Lessons learnt from building damages in the Wenchuan earthquake-seismic concept design of buildings [J]. Journal of Building Structures, 2008, 29(4): 20 − 25. (in Chinese)
|
[55] |
王亚勇. 汶川地震建筑震害启示——三水准设防和抗震设计基本要求[J]. 建筑结构学报, 2008, 29(4): 26 − 33.
WANG Yayong. Lessons learnt from building damages in the Wenchuan earthquake -- three earthquake performance objectives and basic requirements for seismic design of buildings [J]. Journal of Building Structures, 2008, 29(4): 26 − 33. (in Chinese)
|
[56] |
林楷奇. 面向地震和连续倒塌综合防御的RC框架及设计方法[D]. 北京: 清华大学, 2018.
LIN Kaiqi. Design of novel RC frames considering earthquake and progressive collapse [D]. Beijing: Tsinghua University, 2018. (in Chinese)
|
[57] |
陈肇元. 也谈robustness的中文定名[J]. 中国科技术语, 2007, 9(1): 12 − 13.
CHEN Zhaoyuan. A discussion on naming "Robustness" in Chinese [J]. China Terminology, 2007, 9(1): 12 − 13. (in Chinese)
|
[58] |
叶列平, 程光煜, 陆新征, 等. 论结构抗震的鲁棒性[J]. 建筑结构, 2008, 38(6): 11 − 15.
YE Lieping, CHENG Guangyu, LU Xinzheng, et al. Introduction of robustness for seismic structures [J]. Building Structure, 2008, 38(6): 11 − 15. (in Chinese)
|
[59] |
陆新征, 叶列平. 基于IDA分析的结构抗地震倒塌能力研究[J]. 工程抗震与加固改造, 2010, 32(1): 13 − 18. doi: 10.3969/j.issn.1002-8412.2010.01.003
LU Xinzheng, YE Lieping. Study on the seismic collapse resistance of structural system [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1): 13 − 18. (in Chinese) doi: 10.3969/j.issn.1002-8412.2010.01.003
|
[60] |
吕大刚, 宋鹏彦, 崔双双, 等. 结构鲁棒性及其评价指标[J]. 建筑结构学报, 2011, 32(11): 44 − 54.
LYU Dagang, SONG Pengyan, CUI Shuangshuang, et al. Structural robustness and its assessment indicators [J]. Journal of Building Structures, 2011, 32(11): 44 − 54. (in Chinese)
|
[61] |
林旭川. 基于系统方法的RC框架结构抗震性能优化设计[D]. 北京: 清华大学, 2009.
LIN Xuchuan. Optimal design for seismic performance of RC frame based on system method [D]. Beijing: Tsinghua University, 2009. (in Chinese)
|
[62] |
施炜. RC框架结构基于一致倒塌风险的抗震设计方法研究[D]. 北京: 清华大学, 2015.
SHI Wei. Uniform collapse risk targeted seismic design methodology for reinforced concrete frame structures [D]. Beijing: Tsinghua University, 2015. (in Chinese)
|
[63] |
唐代远. 等跨RC框架结构抗地震倒塌性能的试验研究及理论分析[D]. 北京: 清华大学, 2011.
TANG Daiyuan. Experimental and theoretical study on seismic collapse resistance of RC frame structures with equal span [D]. Beijing: Tsinghua University, 2011. (in Chinese)
|
[64] |
陆新征, 马玉虎, 陈浩宇, 等. 7度区典型框架教学楼抗震加强措施效果对比[J]. 地震工程与工程振动, 2011, 31(1): 124 − 129.
LU Xinzheng, MA Yuhu, CHEN Haoyu, et al. Comparison among different strengthening methods for a typical RC classroom frame in zones with seismic intensity Ⅶ [J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(1): 124 − 129. (in Chinese)
|
[65] |
陆新征, 马玉虎, 周萌, 等. 箍筋约束对典型RC框架教学楼抗地震倒塌能力影响分析[J]. 土木建筑与环境工程, 2010, 32(增刊2): 322 − 325, 331.
LU Xinzheng, MA Yuhu, ZHOU Meng, et al. Study on the impact of stirrups confinement on the seismic collapse resistance of a typical RC frame educational building [J]. Journal of Civil, Architectural & Environmental Engineering, 2010, 32(Suppl 2): 322 − 325, 331. (in Chinese)
|
[66] |
清华大学, 西南交通大学, 重庆大学, 等. 汶川地震建筑震害分析及设计对策[M]. 北京: 中国建筑工业出版社, 2009: 40 − 170.
Tsinghua University, Southwest Jiaotong University, Chongqing University, et al. Analysis and design measures of building damage in Wenchuan earthquake [M]. Beijing: China Architecture & Building Press, 2009: 40 − 170.
|
[67] |
UBC 1997, Uniform building code [S]. California: International Conference of Building Officials, 1997.
|
[68] |
曲哲, 叶列平. “破坏-安全”结构抗震理念及其应用[J]. 震灾防御技术, 2009, 4(3): 241 − 255. doi: 10.3969/j.issn.1673-5722.2009.03.001
QU Zhe, YE Lieping. “Fail-safe” concept in seismic design and its applications [J]. Technology for Earthquake Disaster Prevention, 2009, 4(3): 241 − 255. (in Chinese) doi: 10.3969/j.issn.1673-5722.2009.03.001
|
[69] |
应急管理部. 福建省泉州市欣佳酒店“3·7”坍塌事故调查报告[R]. 北京: 应急管理部, 2020: 1 − 9.
Ministry of Emergency Management of the People’s Republic of China. Investigation report on the "3·7" collapse accident of Xinjia Hotel in Quanzhou, Fujian Province [R]. Beijing: Ministry of Emergency Management of the People’s Republic of China, 2020: 1 − 9. (in Chinese)
|
[70] |
应急管理部. 湖南长沙“4·29”特别重大居民自建房倒塌事故调查报告[R]. 北京: 应急管理部, 2023: 1 − 9.
Ministry of Emergency Management of the People’s Republic of China. Investigation report on the "4·29" severe collapse accident of a self-built house by residents in Changsha, Hunan [R]. Beijing: Ministry of Emergency Management of the People’s Republic of China, 2023: 1 − 9. (in Chinese)
|
[71] |
ZHENG Z, LIAO W J, LIN J R, et al. Digital twin-based investigation of a building collapse accident [J]. Advances in Civil Engineering, 2022: 9568967. doi: 10.1155/2022/9568967
|
[72] |
王芃, 邵志刚, 刘晓霞, 等. 中国陆区活动地块边界带主要断层10年尺度强震发生概率[J]. 地球物理学报, 2022, 65(10): 3829 − 3843. doi: 10.6038/cjg2022Q0082
WANG Peng, SHAO Zhigang, LIU Xiaoxia, et al. Ten-year probability of strong earthquakes on major faults in boundaries of active blocks in Chinese continent [J]. Chinese Journal of Geophysics, 2022, 65(10): 3829 − 3843. (in Chinese) doi: 10.6038/cjg2022Q0082
|
[73] |
徐伟进, 吴健, 高孟潭. 中国大陆基于BPT模型的时间相依地震危险性分析[J]. 地球物理学报, 2023, 66(12): 5005 − 5018. doi: 10.6038/cjg2022Q0470
XU Weijin, WU Jian, GAO Mengtan. Time-dependent seismic hazard analysis in Chinese mainland based on BPT model [J]. Chinese Journal of Geophysics, 2023, 66(12): 5005 − 5018. (in Chinese) doi: 10.6038/cjg2022Q0470
|
[74] |
GB 18306−2015, 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2016.
GB 18306−2015, Seismic ground motion parameters zonation map of China [S]. Beijing: Standards Press of China, 2016. (in Chinese)
|
[75] |
黄勇, 谢亚晨, 田亮, 等. 2023年土耳其7.8级地震交通系统震害与启示[J]. 世界地震工程, 2023, 39(3): 1 − 15.
HUANG Yong, XIE Yachen, TIAN Liang, et al. Earthquake damage and enlightenment from traffic system in 2023 Turkey Ms7.8 earthquake [J]. World Earthquake Engineering, 2023, 39(3): 1 − 15. (in Chinese)
|
[76] |
陆新征, 覃思中, 许镇. 土耳其7.8级地震对我国防震减灾工作的启示[J]. 城市与减灾, 2023(2): 1 − 8. doi: 10.3969/j.issn.1671-0495.2023.02.002
LU Xinzheng, QIN Sizhong, XU Zhen. Enlightenment to China on earthquake prevention and disaster reduction from the M7.8 Earthquake in Turkey [J]. City and Disaster Reduction, 2023(2): 1 − 8. (in Chinese) doi: 10.3969/j.issn.1671-0495.2023.02.002
|
[77] |
王涛, 陈杰, 林旭川, 等. 土耳其Mw7.8级地震房屋震害调查与分析[J]. 防灾博览, 2023(2): 10 − 17.
WANG Tao, CHEN Jie, LIN Xuchuan, et al. Investigation and analysis of seismic damage to buildings in the Mw7.8 Earthquake in Turkey [J]. Overview of Disaster Prevention, 2023(2): 10 − 17. (in Chinese)
|
[78] |
曲哲. 受灾最严重的哈塔伊省最大的两座医院, 一座隔震, 一座非隔震[EB/OL]. https://bbs.co188.com/thread-10425149-1-1.html, 2023-05-04.
QU Zhe. The two largest hospitals in the most severely affected Hatay Province, one with seismic isolation and the other without [EB/OL]. https://bbs.co188.com/thread-10425149-1-1.html, 2023-05-04. (in Chinese)
|
[79] |
Middle East Technical University. Preliminary reconnaissance report on February 6, 2023, Pazarcık Mw=7.7 and Elbistan Mw=7.6, Kahramanmaraş-Türkiye Earthquakes [R]. Turkey: Middle East Technical University, 2023: 12 − 51.
|
[80] |
NAEIM F, DIJULIO R M, BENUSKA K V, et al. Seismic performance analysis of a multistory steel moment frame building damaged during the 1994 Northridge earthquake [J]. The Structural Design of Tall Buildings, 1995, 4(4): 263 − 312. doi: 10.1002/tal.4320040402
|
[81] |
崔鸿超. 日本兵库县南部地震震害综述[J]. 建筑结构学报, 1996, 17(1): 2 − 13.
CUI Hongchao. Overview of the damage caused by the earthquake in southern Hyogo-ken, Japan [J]. Journal of Building Structures, 1996, 17(1): 2 − 13. (in Chinese)
|
[82] |
黄南翼, 张锡云. 日本阪神地震中的钢结构震害[J]. 钢结构, 1995, 10(2): 118 − 127.
HUANG Nanyi, ZHANG Xiyun. On disaster of structural steel in great Hanshen quake in Japan [J]. Steel Construction, 1995, 10(2): 118 − 127. (in Chinese)
|
[83] |
孙治国, 王东升, 李宏男, 等. 汶川地震钢筋混凝土框架震害及震后修复建议[J]. 自然灾害学报, 2010, 19(4): 114 − 123.
SUN Zhiguo, WANG Dongsheng, LI Hongnan, et al. Damage investigation of RC frames in Wenchuan earthquake and suggestions for post-earthquake rehabilitation [J]. Journal of Natural Disasters, 2010, 19(4): 114 − 123. (in Chinese)
|
[84] |
邵楠. 青海玉树地震建筑震害浅析[J]. 工程抗震与加固改造, 2011, 33(4): 136 − 140.
SHAO Nan. Analysis of building damages in Yushu earthquake of Qinghai [J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(4): 136 − 140. (in Chinese)
|
[85] |
彭志桢, 吴小宾, 潘毅, 等. 泸定6.8级地震城镇居住建筑典型震害及启示[J]. 建筑结构, 2024, 54(7): 8 − 15, 29.
PENG Zhizhen, WU Xiaobin, PAN Yi, et al. Typical seismic damage of urban residential buildings in Ms 6.8 Luding earthquake and its enlightenment [J]. Building Structure, 2024, 54(7): 8 − 15, 29. (in Chinese)
|
[86] |
ZHAO W T, YANG H, CHEN J F, et al. A proposed model for nonlinear analysis of RC beam-column joints under seismic loading [J]. Engineering Structures, 2019, 180: 829 − 843. doi: 10.1016/j.engstruct.2018.09.068
|
[87] |
王磊, 班慧勇, 石永久, 等. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11): 68 − 78. doi: 10.6052/j.issn.1000-4750.2017.08.0608
WANG Lei, BAN Huiyong, SHI Yongjiu, et al. Finite element analysis on aseismic behavior of high-strength steel beam-to-column connections in steel frames based on micromechanics of fracture [J]. Engineering Mechanics, 2018, 35(11): 68 − 78. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.08.0608
|
[88] |
NOOR U A, JADOON M A, ONYELOWE K, et al. Non-linear finite element analysis of SFRC beam-column joints under cyclic loading: Enhancing ductility and structural integrity [J]. Scientific Reports, 2024, 14(1): 18152. doi: 10.1038/s41598-024-69270-1
|
[89] |
潘毅, 任靖哲, 任宇, 等. 考虑台地效应的泸定6.8级地震某框架结构震害调查与分析[J]. 土木工程学报, 2024, 57(6): 136 − 151.
PAN Yi, REN Jingzhe, REN Yu, et al. Seismic damage investigation and analysis of frame structures in Luding Ms6.8 earthquake considering platform effect [J]. China Civil Engineering Journal, 2024, 57(6): 136 − 151. (in Chinese)
|
[90] |
林旭川, 陆新征, 叶列平. 钢-混凝土混合框架结构多尺度分析及其建模方法[J]. 计算力学学报, 2010, 27(3): 469 − 475, 495. doi: 10.7511/jslx20103015
LIN Xuchuan, LU Xinzheng, YE Lieping. Multi-scale finite element modeling and its application in the analysis of a steel-concrete hybrid frame [J]. Chinese Journal of Computational Mechanics, 2010, 27(3): 469 − 475, 495. (in Chinese) doi: 10.7511/jslx20103015
|
[91] |
李宏男, 王大东. 钢筋混凝土结构多尺度建模与数值分析[J]. 建筑科学与工程学报, 2014, 31(2): 20 − 25. doi: 10.3969/j.issn.1673-2049.2014.02.004
LI Hongnan, WANG Dadong. Multi-scale finite element modeling and numerical analysis of reinforced concrete structure [J]. Journal of Architecture and Civil Engineering, 2014, 31(2): 20 − 25. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.02.004
|
[92] |
陶慕轩, 聂建国. 面向体系非线性分析的钢管混凝土柱-组合梁节点多尺度高效数值模型[J]. 土木工程学报, 2014, 47(9): 57 − 69.
TAO Muxuan, NIE Jianguo. Multi-scale efficient numerical model of concrete filled steel tube-composite beam joint for nonlinear analysis of structural systems [J]. China Civil Engineering Journal, 2014, 47(9): 57 − 69. (in Chinese)
|
[93] |
LIANG S Y, HOU W Q, GAO Y, et al. Local multiscale method for beam-column joint and its application in large-span column-free underground spatial structures [J]. Structures, 2024, 61: 106031. doi: 10.1016/j.istruc.2024.106031
|
[94] |
曹徐阳, 冯德成, 王谆, 等. 基于OpenSEES的装配式混凝土框架节点数值模拟方法研究[J]. 土木工程学报, 2019, 52(4): 13 − 27.
CAO Xuyang, FENG Decheng, WANG Zhun, et al. Investigation on modelling approaches for prefabricated concrete beam-to-column connections using OpenSEES [J]. China Civil Engineering Journal, 2019, 52(4): 13 − 27. (in Chinese)
|
[95] |
赵卫平, 李雪菡, 龙彬, 等. 钢筋混凝土梁柱边节点滞回性能数值模拟[J]. 哈尔滨工业大学学报, 2024, 56(2): 37 − 47.
ZHAO Weiping, LI Xuehan, LONG Bin, et al. Numerical simulation of the hysteretic performance of exterior reinforced concrete beam-column joints [J]. Journal of Harbin Institute of Technology, 2024, 56(2): 37 − 47. (in Chinese)
|
[96] |
夏磊, 张鹏鹏, 王文达. 半刚性连接钢管混凝土框架动力特性的非线性有限元分析[J]. 工程抗震与加固改造, 2013, 35(1): 16 − 22.
XIA Lei, ZHANG Pengpeng, WANG Wenda. Nonlinear finite element analysis of dynamic characteristics of semi-rigid frames with concrete-filled steel tubular columns [J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35(1): 16 − 22. (in Chinese)
|
[97] |
KARABINI M, KARAMPINIS I, ROUSAKIS T, et al. Machine learning ensemble methodologies for the prediction of the failure mode of reinforced concrete beam-column joints [J]. Information, 2024, 15(10): 15100647. doi: 10.3390/info15100647
|
[98] |
YASEEN Z M, AFAN H A, TRAN M T. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm [J]. IOP Conference Series: Earth and Environmental Science, 2018, 143(1): 012025.
|
[99] |
姜健, 吕大刚, 陆新征, 等. 建筑结构抗连续性倒塌研究进展与发展趋势[J]. 建筑结构学报, 2022, 43(1): 1 − 28.
JIANG Jian, LYU Dagang, LU Xinzheng, et al. Research progress and development trends on progressive collapse resistance of building structures [J]. Journal of Building Structures, 2022, 43(1): 1 − 28. (in Chinese)
|
[100] |
XU Z, LU X Z, GUAN H, et al. Physics engine-driven visualization of deactivated elements and its application in bridge collapse simulation [J]. Automation in Construction, 2013, 35: 471 − 481. doi: 10.1016/j.autcon.2013.06.006
|
[101] |
ZHENG Z, TIAN Y, YANG Z B, et al. Hybrid framework for simulating building collapse and ruin scenarios using finite element method and physics engine [J]. Applied Sciences, 2020, 10(12): 10124408. doi: 10.3390/app10124408
|
[102] |
LU X Z, GUAN H, SUN H L, et al. A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021 [J]. Frontiers of Structural and Civil Engineering, 2021, 15(5): 1097 − 1110. doi: 10.1007/s11709-021-0766-0
|
[103] |
刘金龙, 张健, 林均岐, 等. RC框架结构地震倒塌及其废墟影响范围研究[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(2): 262 − 270.
LIU Jinlong, ZHANG Jian, LIN Junqi, et al. Study on earthquake collapse of RC frame structure and influence range of ruins [J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2023, 55(2): 262 − 270. (in Chinese)
|
[104] |
KEYS R A, CLUBLEY S K. Establishing a predictive method for blast induced masonry debris distribution using experimental and numerical methods [J]. Engineering Failure Analysis, 2017, 82: 82 − 91. doi: 10.1016/j.engfailanal.2017.07.017
|
[105] |
WANG S N, CHENG X W, LI Y, et al. Assessing progressive collapse regions of reinforced concrete frame structures using Graph Convolutional Networks [J]. Engineering Structures, 2025, 322: 119076. doi: 10.1016/j.engstruct.2024.119076
|
[106] |
REN P Q, LI Y, LU X Z, et al. Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middle-column-removal scenario [J]. Engineering Structures, 2016, 118: 28 − 40. doi: 10.1016/j.engstruct.2016.03.051
|
[107] |
孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88 − 96. doi: 10.6052/j.issn.1000-4750.2017.02.0120
MENG Bao, ZHONG Weihui, HAO Jiping. Experimental study on anti-collapse performance for beam-to-column assemblies of steel frame based on joint stiffness [J]. Engineering Mechanics, 2018, 35(6): 88 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0120
|
[108] |
LIN K Q, LI D Y, XIE L L, et al. Analytical model for progressive collapse of RC frame beam-column substructures using multi-gene genetic programming [J]. International Journal of Structural Stability and Dynamics, 2023, 23(13): 2350150. doi: 10.1142/S021945542350150X
|
[109] |
钱蓝萍, 李易, 陆新征, 等. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(增刊1): 313 − 319. doi: 10.6052/j.issn.1000-4750.2017.05.S060
QIAN Lanping, LI Yi, LU Xinzheng, et al. Numerical investigation on residual bearing capacity of columns after collision of light weight vehicle [J]. Engineering Mechanics, 2018, 35(Suppl 1): 313 − 319. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.S060
|
[110] |
乔惠云, 郭壮壮, 陈誉, 等. 平面钢框架在撞击荷载作用下的抗连续倒塌分析[J]. 振动与冲击, 2022, 41(4): 176 − 184.
QIAO Huiyun, GUO Zhuangzhuang, CHEN Yu, et al. Anti-progressive collapse analysis for plane steel frame under impact load [J]. Journal of Vibration and Shock, 2022, 41(4): 176 − 184. (in Chinese)
|
[111] |
高超, 宗周红, 伍俊. 爆炸荷载下钢筋混凝土框架结构倒塌破坏试验研究[J]. 土木工程学报, 2013, 46(7): 9 − 20.
GAO Chao, ZONG Zhouhong, WU Jun. Experimental study on progressive collapse failure of RC frame structures under blast loading [J]. China Civil Engineering Journal, 2013, 46(7): 9 − 20. (in Chinese)
|
[112] |
陈公轻, 吴昊, 吕晋贤, 等. 爆炸荷载作用下砌体填充墙对RC框架结构损伤破坏的影响[J]. 振动与冲击, 2024, 43(3): 93 − 104, 157.
CHEN Gongqing, WU Hao, LYU Jinxian, et al. Effects of masonry infilled walls on damage and failure of RC frame structure under explosive load [J]. Journal of Vibration and Shock, 2024, 43(3): 93 − 104, 157. (in Chinese)
|
[113] |
PHAM A T, BRENNEIS C, ROLLER C, et al. Blast-induced dynamic responses of reinforced concrete structures under progressive collapse [J]. Magazine of Concrete Research, 2022, 74(16): 850 − 863. doi: 10.1680/jmacr.21.00115
|
[114] |
ALMUSALLAM T H, ELSANADEDY H M, ABBAS H, et al. Progressive collapse analysis of a RC building subjected to blast loads [J]. Structural Engineering and Mechanics, 2010, 36(3): 301 − 319. doi: 10.12989/sem.2010.36.3.301
|
[115] |
吕晋贤, 吴昊, 方秦. 爆炸作用下高层框架结构倒塌分析与设计建议[J]. 建筑结构学报, 2023, 44(11): 114 − 128.
LYU Jinxian, WU Hao, FANG Qin. Collapse analysis and design recommendations of high-rise frame structures under blast loadings [J]. Journal of Building Structures, 2023, 44(11): 114 − 128. (in Chinese)
|
[116] |
LU Z, RONG K J, ZHOU Z G, et al. Experimental study on performance of frame structure strengthened with foamed aluminum under debris flow impact [J]. Journal of Performance of Constructed Facilities, 2020, 34(2): 04020011. doi: 10.1061/(ASCE)CF.1943-5509.0001403
|
[117] |
OU C, LIU J, SUN L, et al. Experimental and numerical investigation on the dynamic responses of the remaining structure under impact loading with column being removed [J]. KSCE Journal of Civil Engineering, 2021, 25(6): 2078 − 2088. doi: 10.1007/s12205-021-1026-5
|
[118] |
ZHOU X H, HE Y J, XIANG S Y, et al. Experimental and numerical studies on structural response of steel garage subjected to vehicular collision [J]. Structures, 2022, 37: 933 − 946. doi: 10.1016/j.istruc.2022.01.068
|
[119] |
YI F, YI W J, SUN J M, et al. On the progressive collapse performance of RC frame structures under impact column removal [J]. Engineering Structures, 2024, 307: 117926. doi: 10.1016/j.engstruct.2024.117926
|
[120] |
GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
GB 50009−2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
|
[121] |
李易, 陆新征, 叶列平, 等. 混凝土框架结构火灾连续倒塌数值分析模型[J]. 工程力学, 2012, 29(4): 96 − 103, 112. doi: 10.6052/j.issn.1000-4750.2010.06.0397
LI Yi, LU Xinzheng, YE Lieping, et al. Numercial models of fire induced progressive collapse analysis for reinforced concrete frame structures [J]. Engineering Mechanics, 2012, 29(4): 96 − 103, 112. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.06.0397
|
[122] |
JIANG B H, LI G Q, LI L L, et al. Experimental studies on progressive collapse resistance of steel moment frames under localized furnace loading [J]. Journal of Structural Engineering, 2018, 144(2): 04017190. doi: 10.1061/(ASCE)ST.1943-541X.0001947
|
[123] |
LOU G B, WANG C H, JIANG J, et al. Fire tests on full-scale steel portal frames against progressive collapse [J]. Journal of Constructional Steel Research, 2018, 145: 137 − 152. doi: 10.1016/j.jcsr.2018.02.024
|
[124] |
PARTHASARATHI N, SATYANARAYANAN K S, PRAKASH M, et al. Progressive collapse evaluation of RC frames under high-temperature conditions: Experimental and finite element investigations [J]. Structures, 2022, 41: 375 − 388. doi: 10.1016/j.istruc.2022.05.037
|
[125] |
JIANG J, LI G Q. Progressive collapse analysis of 3D steel frames with concrete slabs exposed to localized fire [J]. Engineering Structures, 2017, 149: 21 − 34. doi: 10.1016/j.engstruct.2016.07.041
|
[126] |
管玉皓, 刁梦竹, 李易, 等. 蔓延火灾下混凝土框架连续倒塌数值分析[J]. 建筑科学, 2017, 33(11): 18 − 24.
GUAN Yuhao, DIAO Mengzhu, LI Yi, et al. Numerical study on progressive collapse of a reinforced concrete frame subjected to travelling fire [J]. Building Science, 2017, 33(11): 18 − 24. (in Chinese)
|
[127] |
BS EN 1993-1-2: 2005, Eurocode 3: Design of steel structures-Part 1-2: General rules-Structural fire design [S]. Brussels: European Committee for Standardization, 2005.
|
[128] |
BS EN 1991-1-7: 2006+A1: 2014, Eurocode 1: Actions on structures-Part 1-7: General actions-Accidental actions [S]. London: British Standards Institution, 2014.
|
[129] |
BS EN 1991-1-2: 2024, Eurocode 1: Actions on structures-Part 1-2: Actions on structures exposed to fire [S]. London: British Standards Institution, 2024.
|
[130] |
UFC 3-340-02, Structures to resist the effects of accidental explosions [S]. Washington, DC: US Department of Defense, 2014.
|
[131] |
HOU J, YANG Z. Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column substructures [J]. Journal of Performance of Constructed Facilities, 2014, 28(4): 04014008. doi: 10.1061/(ASCE)CF.1943-5509.0000492
|
[132] |
LU X Z, LIN K Q, LI C F, et al. New analytical calculation models for compressive arch action in reinforced concrete structures [J]. Engineering Structures, 2018, 168: 721 − 735. doi: 10.1016/j.engstruct.2018.04.097
|
[133] |
PARK R, GAMBLE W L. Reinforced concrete slabs [M]. New York: John Wiley & Sons, 2000: 371 − 376.
|
[134] |
ABBASNIA R, NAV F M, USEFI N, et al. A new method for progressive collapse analysis of RC frames [J]. Structural Engineering and Mechanics, 2016, 60(1): 31 − 50. doi: 10.12989/sem.2016.60.1.031
|
[135] |
IZZUDDIN B A, VLASSIS A G, ELGHAZOULI A Y, et al. Progressive collapse of multi-storey buildings due to sudden column loss--Part I: Simplified assessment framework [J]. Engineering Structures, 2008, 30(5): 1308 − 1318.
|
[136] |
李易, 叶列平, 陆新征. 基于能量方法的RC框架结构连续倒塌抗力需求分析Ⅰ: 梁机制[J]. 建筑结构学报, 2011, 32(11): 1 − 8.
LI Yi, YE Lieping, LU Xinzheng. Progressive collapse resistance demand of RC frame structures based on energy method I: Beam mechanism [J]. Journal of Building Structures, 2011, 32(11): 1 − 8. (in Chinese)
|
[137] |
李易, 陆新征, 叶列平. 基于能量方法的RC框架结构连续倒塌抗力需求分析Ⅱ: 悬链线机制[J]. 建筑结构学报, 2011, 32(11): 9 − 16.
LI Yi, LU Xinzheng, YE Lieping. Progressive collapse resistance demand of RC frame structures based on energy method II: Catenary mechanism [J]. Journal of Building Structures, 2011, 32(11): 9 − 16. (in Chinese)
|
[138] |
初明进, 周育泷, 陆新征, 等. 钢筋混凝土单向梁板子结构抗连续倒塌试验研究[J]. 土木工程学报, 2016, 49(2): 31 − 40.
CHU Mingjin, ZHOU Yulong, LU Xinzheng, et al. An experimental study on one-way reinforced concrete beam-slab substructures for resisting progressive collapse [J]. China Civil Engineering Journal, 2016, 49(2): 31 − 40. (in Chinese)
|
[139] |
QIAN K, LI B. Quantification of slab influences on the dynamic performance of RC frames against progressive collapse [J]. Journal of Performance of Constructed Facilities, 2015, 29(1): 04014029. doi: 10.1061/(ASCE)CF.1943-5509.0000488
|
[140] |
钱凯, 李治, 翁运昊, 等. 钢筋混凝土梁-板子结构抗连续性倒塌性能研究[J]. 工程力学, 2019, 36(6): 239 − 247. doi: 10.6052/j.issn.1000-4750.2018.05.0297
QIAN Kai, LI Zhi, WENG Yunhao, et al. Behavior of RC beam-slab substructures to resist progressive collapse [J]. Engineering Mechanics, 2019, 36(6): 239 − 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0297
|
[141] |
喻君, 甘艺平, 李爽. 考虑全填充墙作用的钢筋混凝土框架抗连续倒塌性能分析[J]. 建筑结构学报, 2019, 40(11): 112 − 121.
YU Jun, GAN Yiping, LI Shuang. Analysis of progressive collapse performance of reinforced concrete frames with full-height infill walls [J]. Journal of Building Structures, 2019, 40(11): 112 − 121. (in Chinese)
|
[142] |
王景玄, 杨永, 孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报, 2022, 55(8): 1 − 13.
WANG Jingxuan, YANG Yong, SUN Yanhao. Research on progressive collapse resistance of composite frame with concrete filled steel tubular columns and full-height infill walls [J]. China Civil Engineering Journal, 2022, 55(8): 1 − 13. (in Chinese)
|
[143] |
CHANG D, ZENG B, HUANG L J, et al. Investigation on progressive collapse resistance of prestressed concrete frames with infilled walls [J]. Engineering Failure Analysis, 2023, 143: 106866. doi: 10.1016/j.engfailanal.2022.106866
|
[144] |
WANG J J, WANG W. Theoretical evaluation method for the progressive collapse resistance of steel frame buildings [J]. Journal of Constructional Steel Research, 2021, 179: 106576. doi: 10.1016/j.jcsr.2021.106576
|
[145] |
WANG Y, ZHANG B, GU X L, et al. Experimental and numerical investigation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects [J]. Journal of Building Engineering, 2022, 47: 103908. doi: 10.1016/j.jobe.2021.103908
|
[146] |
SHAN S D, WANG H R, LI S, et al. Evaluation of progressive collapse resistances of RC frame with contributions of beam, slab and infill wall [J]. Structures, 2023, 53: 1463 − 1475. doi: 10.1016/j.istruc.2023.04.114
|
[147] |
LU X Z, GUAN H. Earthquake disaster simulation of civil infrastructures: From tall buildings to urban areas [M]. 2nd ed. Singapore: Springer, 2021: 549 − 639.
|
[148] |
T/CECS 392−2021, 建筑结构抗倒塌设计标准[S]. 北京: 中国计划出版社, 2021.
T/CECS 392−2021, Standard for anti-collapse design of building structures [S]. Beijing: China Planning Press, 2021. (in Chinese)
|
[149] |
王浩, 李易, 陆新征, 等. 基于倒塌率和承载力储备指标的结构抗连续倒塌能力评价方法[J]. 建筑结构学报, 2014, 35(10): 65 − 72.
WANG Hao, LI Yi, LU Xinzheng, et al. An evaluation method for progressive collapse resistance based on a collapse probability and a resistance reservation indexes [J]. Journal of Building Structures, 2014, 35(10): 65 − 72. (in Chinese)
|
[150] |
YU X H, LU D G, QIAN K, et al. Uncertainty and sensitivity analysis of reinforced concrete frame structures subjected to column loss [J]. Journal of Performance of Constructed Facilities, 2017, 31(1): 04016069. doi: 10.1061/(ASCE)CF.1943-5509.0000930
|
[151] |
LIN K Q, CHEN Z F, LI Y, et al. Uncertainty analysis on progressive collapse of RC frame structures under dynamic column removal scenarios [J]. Journal of Building Engineering, 2022, 46: 103811. doi: 10.1016/j.jobe.2021.103811
|
[152] |
FENG D C, XIE S C, XU J, et al. Robustness quantification of reinforced concrete structures subjected to progressive collapse via the probability density evolution method [J]. Engineering Structures, 2020, 202: 109877. doi: 10.1016/j.engstruct.2019.109877
|
[153] |
LI L L, LI G Q, JIANG B H, et al. Analysis of robustness of steel frames against progressive collapse [J]. Journal of Constructional Steel Research, 2018, 143: 264 − 278. doi: 10.1016/j.jcsr.2018.01.010
|
[154] |
FASCETTI A, KUNNATH S K, NISTICÒ N. Robustness evaluation of RC frame buildings to progressive collapse [J]. Engineering Structures, 2015, 86: 242 − 249. doi: 10.1016/j.engstruct.2015.01.008
|
[155] |
BECK A T, RIBEIRO L D R, COSTA L G L, et al. Comparison of risk-based robustness indices in progressive collapse analysis of building structures [J]. Structures, 2023, 57: 105295. doi: 10.1016/j.istruc.2023.105295
|
[156] |
BECK A T, RIBEIRO L D R, VALDEBENITO M. Risk-based cost-benefit analysis of frame structures considering progressive collapse under column removal scenarios [J]. Engineering Structures, 2020, 225: 111295. doi: 10.1016/j.engstruct.2020.111295
|
[157] |
STEWART M G. Life-safety risks and optimisation of protective measures against terrorist threats to infrastructure [J]. Structure and Infrastructure Engineering, 2011, 7(6): 431 − 440. doi: 10.1080/15732470902726023
|
[158] |
STEWART M G. Risk of progressive collapse of buildings from terrorist attacks: Are the benefits of protection worth the cost? [J]. Journal of Performance of Constructed Facilities, 2017, 31(2): 04016093. doi: 10.1061/(ASCE)CF.1943-5509.0000954
|
[159] |
ZHENG J H, WANG D R, GUAN Z G, et al. Cluster computing-aided open-source programming framework for model updating of civil structures [J]. Structural Control and Health Monitoring, 2024, 2024(1): 9331705. doi: 10.1155/2024/9331705
|
[160] |
GRANT M, STEWART M G. Probabilistic risk assessment for improvised explosive device attacks that cause significant building damage [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4014009. doi: 10.1061/(ASCE)CF.1943-5509.0000694
|
[161] |
XIAO Y, KUNNATH S, LI F W, et al. Collapse test of three-story half-scale reinforced concrete frame building [J]. ACI Structural Journal, 2015, 112(4): 429 − 438.
|
[162] |
陈泽帆, 林楷奇, 陆新征, 等. RC框架梁柱子结构抗连续倒塌性能不确定性分析[J]. 工程力学, 2021, 38(6): 72 − 80, 90. doi: 10.6052/j.issn.1000-4750.2020.07.0464
CHEN Zefan, LIN Kaiqi, LU Xinzheng, et al. Uncertainty analysis on progressive collapse resistance of RC beam-column substructures [J]. Engineering Mechanics, 2021, 38(6): 72 − 80, 90. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0464
|
[163] |
甘艺平, 喻君, 陈隽, 等. 不等跨RC框架的抗连续倒塌理论分析及鲁棒性评判指标研究[J]. 工程力学, 2022, 39(8): 210 − 222. doi: 10.6052/j.issn.1000-4750.2021.04.0324
GAN Yiping, YU Jun, CHEN Jun, et al. Study on analytical model and robustness ranking index of RC frames with unequal spans against progressive collapse [J]. Engineering Mechanics, 2022, 39(8): 210 − 222. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0324
|
[164] |
KONG D Y, YANG Y, YANG B, et al. Experimental study on progressive collapse of 3D steel frames under concentrated and uniformly distributed loading conditions [J]. Journal of Structural Engineering, 2020, 146(4): 04020017. doi: 10.1061/(ASCE)ST.1943-541X.0002537
|
[165] |
张惊宙, 李国强, 冯然, 等. 考虑边柱失效位置和根数影响的钢框架结构抗倒塌性能研究[J]. 土木工程学报, 2021, 54(8): 67 − 74.
ZHANG Jingzhou, LI Guoqiang, FENG Ran, et al. Collapse resistance of steel framed-structure considering the effects of failure location and number of edge columns [J]. China Civil Engineering Journal, 2021, 54(8): 67 − 74. (in Chinese)
|
[166] |
李治, 原小兰, 薛天琦, 等. 不同去柱工况下多层钢框架结构抗连续倒塌机理研究[J]. 工程力学, 2024, 41(4): 140 − 150. doi: 10.6052/j.issn.1000-4750.2022.04.0361
LI Zhi, YUAN Xiaolan, XUE Tianqi, et al. Behavior of progressive collapse of multi-layer steel frame structure under different column removal conditions [J]. Engineering Mechanics, 2024, 41(4): 140 − 150. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.04.0361
|
[167] |
王伟, 王俊杰. 组合楼板钢框架结构的连续倒塌简化模拟[J]. 工程力学, 2023, 40(3): 98 − 106. doi: 10.6052/j.issn.1000-4750.2021.08.0679
WANG Wei, WANG Junjie. Reduced-order progressive collapse modeling of steel frame buildings with composite slabs [J]. Engineering Mechanics, 2023, 40(3): 98 − 106. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0679
|
[168] |
郑国光. 有效防范化解地震灾害重大风险[J]. 中国应急管理科学, 2019(3/4): 2 − 5.
ZHENG Guoguang. Effective preventing and resolving major risks of earthquake disasters [J]. Journal of China Emergency Management Science, 2019(3/4): 2 − 5. (in Chinese)
|
[169] |
BORGHINI A, GUSELLA F, VIGNOLI A. Seismic vulnerability of existing R. C. buildings: A simplified numerical model to analyse the influence of the beam-column joints collapse [J]. Engineering Structures, 2016, 121: 19 − 29. doi: 10.1016/j.engstruct.2016.04.045
|
[170] |
程绍革, 朱毅秀, 杨欣, 等. 既有框架性能化抗震鉴定方法研究及工程应用[J]. 工程力学, 2021, 38(8): 154 − 165. doi: 10.6052/j.issn.1000-4750.2020.08.0559
CHENG Shaoge, ZHU Yixiu, YANG Xin, et al. Seismic evaluation method based on seismic performance and its application for existing RC frames [J]. Engineering Mechanics, 2021, 38(8): 154 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0559
|
[171] |
TSIAVOS A, AMREIN P, BENDER N, et al. Compliance-based estimation of seismic collapse risk of an existing reinforced concrete frame building [J]. Bulletin of Earthquake Engineering, 2021, 19(14): 6027 − 6048. doi: 10.1007/s10518-021-01215-9
|
[172] |
KIM J, SHIN W S. Retrofit of RC frames against progressive collapse using prestressing tendons [J]. The Structural Design of Tall and Special Buildings, 2013, 22(4): 349 − 361. doi: 10.1002/tal.691
|
[173] |
王伟, 秦希. 基于结构鲁棒性提升的隔板贯通节点加固构造[J]. 同济大学学报(自然科学版), 2015, 43(5): 685 − 692. doi: 10.11908/j.issn.0253-374x.2015.05.006
WANG Wei, QIN Xi. Retrofitted connection details of through diaphragm joint for structural robustness enhancement [J]. Journal of Tongji University (Natural Science), 2015, 43(5): 685 − 692. (in Chinese) doi: 10.11908/j.issn.0253-374x.2015.05.006
|
[174] |
张富文, 李向民, 王卓琳, 等. 纤维增强水泥基复合材料加固震损RC框架抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6): 61 − 69.
ZHANG Fuwen, LI Xiangmin, WANG Zhuolin, et al. Experimental study on seismic behavior of earthquake-damaged RC frame strengthened by ECC [J]. Journal of Building Structures, 2017, 38(6): 61 − 69. (in Chinese)
|
[175] |
ZHANG Y D, CHENG X W, DIAO M Z, et al. FRP retrofit for RC frame substructures against progressive collapse: Scheme optimisation and resistance calculation [J]. Engineering Structures, 2023, 289: 116289. doi: 10.1016/j.engstruct.2023.116289
|
[176] |
JIANG J, WANG C H, LOU G B, et al. Quantitative evaluation of progressive collapse process of steel portal frames in fire [J]. Journal of Constructional Steel Research, 2018, 150: 277 − 287. doi: 10.1016/j.jcsr.2018.08.020
|
[177] |
JI W, ZHU S J, LI G Q, et al. Approach for early-warning collapse of double-span steel portal frames induced by fire [J]. Fire Safety Journal, 2022, 131: 103628. doi: 10.1016/j.firesaf.2022.103628
|
[178] |
LI G Q, LI J Y, ZHU S J. An approach for early-warning collapse of planar steel trapezoid trusses exposed to fire [J]. Fire Safety Journal, 2023, 137: 103778. doi: 10.1016/j.firesaf.2023.103778
|
[179] |
WANG Y, LI G Q, ZHU S J. Graph recurrent neural networks-integrated real-time prediction of key displacements for fire-induced collapse early warning of steel frames [J]. Applied Soft Computing, 2024, 163: 111942. doi: 10.1016/j.asoc.2024.111942
|
[180] |
张煊铭, 蒋庆, 张伟, 等. 福州海峡国际会展中心抗连续倒塌分析[J]. 建筑结构, 2017, 47(16): 14 − 18.
ZHANG Xuanming, JIANG Qing, ZHANG Wei, et al. Progressive collapse analysis of Fuzhou Strait International Convention and Exhibition Center [J]. Building Structure, 2017, 47(16): 14 − 18. (in Chinese)
|
[181] |
沈金, 王俊, 王成志, 等. 某超长异形曲面单层网壳结构设计与分析[J]. 建筑结构, 2023, 53(20): 33 − 39.
SHEN Jin, WANG Jun, WANG Chengzhi, et al. Design and analysis of a super-long profiled curved single-layer reticulated shell structure [J]. Building Structure, 2023, 53(20): 33 − 39. (in Chinese)
|
[182] |
杨名流, 李婉莹, 钟聪明. 北京CBD核心区Z6地块项目主塔楼抗连续倒塌分析[J]. 建筑结构, 2015, 45(24): 53 − 57.
YANG Mingliu, LI Wanying, ZHONG Congming. Progressive collapse analysis of main tower of Z6 Plot Project in core area of Beijing CBD [J]. Building Structure, 2015, 45(24): 53 − 57. (in Chinese)
|
[183] |
高晗. 郑州西流湖公园生态中心大悬挑结构设计[J]. 建筑结构, 2022, 52(增刊1): 1145 − 1149.
GAO Han. Cantilever structure design of ecological center of Xiliu Lake Park in Zhengzhou [J]. Building Structure, 2022, 52(Suppl 1): 1145 − 1149. (in Chinese)
|
[184] |
LU X, LU X Z, GUAN H, et al. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5): 705 − 723.
|
[185] |
LU X Z, LU X, GUAN H, et al. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building [J]. Journal of Constructional Steel Research, 2013, 82: 59 − 71. doi: 10.1016/j.jcsr.2012.12.004
|
[186] |
LU X, LU X Z, GUAN H, et al. Application of earthquake-induced collapse analysis in design optimization of a supertall building [J]. The Structural Design of Tall and Special Buildings, 2016, 25(17): 926 − 946. doi: 10.1002/tal.1291
|
[187] |
LU Z, CHEN X Y, LU X L, et al. Shaking table test and numerical simulation of an RC frame-core tube structure for earthquake-induced collapse [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(9): 1537 − 1556.
|
[188] |
AZGHANDI R R, SHAKIB H, ZAKERSALEHI M. Numerical simulation of seismic collapse mechanisms of vertically irregular steel high-rise buildings [J]. Journal of Constructional Steel Research, 2020, 166: 105914. doi: 10.1016/j.jcsr.2019.105914
|
[189] |
MAGLIULO G, ERCOLINO M, PETRONE C, et al. The Emilia earthquake: Seismic performance of precast reinforced concrete buildings [J]. Earthquake Spectra, 2014, 30(2): 891 − 912. doi: 10.1193/091012EQS285M
|
[190] |
KURAMA Y C, SRITHARAN S, FLEISCHMAN R B, et al. Seismic-resistant precast concrete structures: State of the art [J]. Journal of Structural Engineering, 2018, 144(4): 03118001. doi: 10.1061/(ASCE)ST.1943-541X.0001972
|
[191] |
XUE L, HE G Y, SUN Q W. Failure analysis of monolithic precast shear wall structure subjected to strong earthquake [J]. Engineering Failure Analysis, 2023, 146: 107078. doi: 10.1016/j.engfailanal.2023.107078
|
[192] |
LIU R Y, LAI Q L, YAN G Y, et al. Experimental study on earthquake-resilient precast shear wall with bolt-plate connectors [J]. Journal of Earthquake Engineering, 2023, 27(9): 2555 − 2569. doi: 10.1080/13632469.2022.2121340
|
[193] |
安毅, 李易, 陆新征, 等. 干式连接装配式混凝土框架抗连续倒塌静力试验研究[J]. 建筑结构学报, 2020, 41(7): 102 − 109.
AN Yi, LI Yi, LU Xinzheng, et al. Static progressive collapse test on precast concrete frames with dry connections [J]. Journal of Building Structures, 2020, 41(7): 102 − 109. (in Chinese)
|
[194] |
袁鑫杰, 李易, 陆新征, 等. 湿式连接装配式混凝土框架抗连续倒塌静力试验研究[J]. 土木工程学报, 2019, 52(12): 46 − 56.
YUAN Xinjie, LI Yi, LU Xinzheng, et al. Static progressive collapse test on prefabricated concrete frames with wet connections [J]. China Civil Engineering Journal, 2019, 52(12): 46 − 56. (in Chinese)
|
[195] |
ZHOU Y, CHEN T P, PEI Y L, et al. Static load test on progressive collapse resistance of fully assembled precast concrete frame structure [J]. Engineering Structures, 2019, 200: 109719. doi: 10.1016/j.engstruct.2019.109719
|
[196] |
刘祎霖, 李易, 赵子栋, 等. 装配整体式混凝土框架结构抗连续倒塌试验研究[J]. 建筑结构学报, 2022, 43(6): 117 − 127.
LIU Yilin, LI Yi, ZHAO Zidong, et al. Experimental study on precast concrete frames with monolithic joints to resist progressive collapse [J]. Journal of Building Structures, 2022, 43(6): 117 − 127. (in Chinese)
|
[197] |
MAKOOND N, SETIAWAN A, BUITRAGO M, et al. Arresting failure propagation in buildings through collapse isolation [J]. Nature, 2024, 629(8012): 592 − 596. doi: 10.1038/s41586-024-07268-5
|
[198] |
QIAN K, LIANG S L, FU F, et al. Progressive collapse resistance of emulative precast concrete frames with various reinforcing details [J]. Journal of Structural Engineering, 2021, 147(8): 04021107. doi: 10.1061/(ASCE)ST.1943-541X.0003065
|
[199] |
LI Z X, LIU H K, SHI Y C, et al. Experimental investigation on progressive collapse performance of prestressed precast concrete frames with dry joints [J]. Engineering Structures, 2021, 246: 113071. doi: 10.1016/j.engstruct.2021.113071
|
[200] |
GU X L, ZHANG B, HUANG X K, et al. Experimental investigation on progressive collapse resistance of precast concrete frame structures with different beam-column connections [J]. Journal of Building Engineering, 2022, 56: 104803. doi: 10.1016/j.jobe.2022.104803
|
[201] |
潘毅, 高海旺, 熊耀清, 等. 泸定6.8级地震减隔震建筑震害调查与分析[J]. 建筑结构学报, 2023, 44(12): 122 − 136.
PAN Yi, GAO Haiwang, XIONG Yaoqing, et al. Seismic damage investigation and analysis of energy-dissipated and seismically isolated buildings in Ms 6.8 Luding earthquake [J]. Journal of Building Structures, 2023, 44(12): 122 − 136. (in Chinese)
|
[202] |
刘立威, 汤东升. 偶然荷载作用下核电站超大型冷却塔倒塌的数值仿真分析[J]. 武汉大学学报(工学版), 2012, 45(增刊1): 198 − 201.
LIU Liwei, TANG Dongsheng. Numerical simulation of collapse of a super-huge cooling tower subjected to extreme loads [J]. Engineering Journal of Wuhan University, 2012, 45(Suppl 1): 198 − 201. (in Chinese)
|
[203] |
孙运慧. 飞行器冲击作用下凯威特型单层球面网壳动力响应研究[D]. 哈尔滨: 哈尔滨理工大学, 2017.
SUN Yunhui. Dynamic response of Kiewitt single-layer reticulated dome under aircraft impact [D]. Harbin: Harbin University of Science and Technology, 2017. (in Chinese)
|
[204] |
HECKÖTTER C, VEPSÄ A. Experimental investigation and numerical analyses of reinforced concrete structures subjected to external missile impact [J]. Progress in Nuclear Energy, 2015, 84: 56 − 67. doi: 10.1016/j.pnucene.2015.02.007
|
[205] |
伍俊, 高超, 陆新征, 等. 军事建筑结构抗连续倒塌工程设计方法[J]. 防护工程, 2012, 34(4): 43 − 49.
WU Jun, GAO Chao, LU Xinzheng, et al. Engineering design methods for mitlitary constructions to resist progressive collapse [J]. Protective Engineering, 2012, 34(4): 43 − 49. (in Chinese)
|
[206] |
ZHAI C L, CHEN X W. Probability damage calculation of building targets under the missile warhead strike [J]. Reliability Engineering and System Safety, 2020, 202: 107030. doi: 10.1016/j.ress.2020.107030
|
[207] |
VEPSÄ A, SAARENHEIMO A, TARALLO F, et al. IRIS_2010-Part II: Experimental data [C]// Proceedings of 21st International Conference on Structural Mechanics in Reactor Technology. New Delhi: International Association for Structural Mechanics in Reactor Technology, 2011: 520.
|
[208] |
ORBOVIC N, BLAHOIANU A. Tests on concrete slabs under hard missile impact to evaluate the influence of transverse reinforcement and pre-stressing on perforation velocity [C]// Proceedings of 21st International Conference on Structural Mechanics in Reactor Technology. New Delhi: International Association for Structural Mechanics in Reactor Technology, 2011: 162.
|
[209] |
SAARENHEIMO A, TUOMALA M, CALONIUS K, et al. Experimental and numerical studies on projectile impacts [J]. Journal of Structural Mechanics, 2009, 42(1): 1 − 37.
|
[210] |
SUGANO T, TSUBOTA H, KASAI Y, et al. Full-scale aircraft impact test for evaluation of impact force [J]. Nuclear Engineering and Design, 1993, 140(3): 373 − 385. doi: 10.1016/0029-5493(93)90119-T
|
[211] |
MUTO K, TACHIKAWA H, SUGANO T, et al. Experimental studies on local damage of reinforced concrete structures by the impact deformable missiles part 1: Outline of test program and small-scale tests [C]// Proceedings of 10th International Conference on Structural Mechanics in Reactor Technology. Anaheim CA: International Association for Structural Mechanics in Reactor Technology, 1989: 257 − 264.
|
[212] |
KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183 − 203. doi: 10.1016/0029-5493(76)90015-7
|
[213] |
LU X Z, LIN K Q, CEN S, et al. Comparing different fidelity models for the impact analysis of large commercial aircrafts on a containment building [J]. Engineering Failure Analysis, 2015, 57: 254 − 269. doi: 10.1016/j.engfailanal.2015.08.002
|
[214] |
GB 50011−2010, 建筑抗震设计标准[S]. 北京: 中国建筑工业出版社, 2010.
GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
|
[215] |
BS 8110-1: 1997, Structural use of concrete–Part 1: Code of practice for design and construction [S]. London: British Standards Institution, 2002.
|
[216] |
EN 1992-1-1: 2004, Eurocode 2: Design of concrete structures–Part 1-1: General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004.
|
[217] |
ASCE/SEI 7-05, Minimum design loads for buildings and other structures [S]. Reston: American Society of Civil Engineers, 2005.
|
[218] |
ACI 318M-08, Building code requirements for structural concrete [S]. Farmington Hills: American Concrete Institute, 2008.
|