HE Xu-hui, DUAN Quan-cheng, YAN Lei, LU Tong-qing. IDENTIFICATION OF FLUTTER DERIVATIVES OF BRIDGE DECKS UNDER FREE VIBRATION RESPONSE BASED ON HGWOP[J]. Engineering Mechanics, 2024, 41(10): 33-42. DOI: 10.6052/j.issn.1000-4750.2022.08.0718
Citation: HE Xu-hui, DUAN Quan-cheng, YAN Lei, LU Tong-qing. IDENTIFICATION OF FLUTTER DERIVATIVES OF BRIDGE DECKS UNDER FREE VIBRATION RESPONSE BASED ON HGWOP[J]. Engineering Mechanics, 2024, 41(10): 33-42. DOI: 10.6052/j.issn.1000-4750.2022.08.0718

IDENTIFICATION OF FLUTTER DERIVATIVES OF BRIDGE DECKS UNDER FREE VIBRATION RESPONSE BASED ON HGWOP

More Information
  • Received Date: August 19, 2022
  • Revised Date: November 09, 2022
  • Available Online: March 24, 2023
  • Based on the section model of two-dimensional bending-torsional coupling free vibration of wind tunnel, a new hybrid algorithm based on Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) is introduced on the basis of the existing least square principle to search relevant parameters, in order to accurately identify the flutter derivatives of bridge section. By comparing the flutter derivative identification results of the traditional iterative method and HGWOP under three kinds of weighted matrices for the ideal plane plate and a bridge, it shows that HGWOP can not only avoid the problem of initial value sensitivity and carry out accurate parameter search when a certain mode signal decays rapidly, but also have more stable and accurate identification under relatively complex weighted matrices. A new flutter derivative identification method is proposed, which makes it possible to apply a more scientific and complex weighted matrix.

  • [1]
    王骑, 李郁林, 李志国, 等. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10): 10 − 16. doi: 10.6052/j.issn.1000-4750.2017.06.0487

    WANG Qi, LI Yulin, LI Zhiguo, et al. Flutter derivatives of a thin plate model under different attack angles [J]. Engineering Mechanics, 2018, 35(10): 10 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0487
    [2]
    丁叶君, 赵林, 鲜荣, 等. 大跨度悬索桥气动稳定性随跨径演变规律[J]. 工程力学, 2023, 40(12): 194 − 202. doi: 10.6052/j.issn.1000-4750.2022.02.0182

    DING Yejun, ZHAO Lin, XIAN Rong, et al. Evolution law of aerodynamic stability of long-span suspension bridges with increasing spans [J]. Engineering Mechanics, 2023, 40(12): 194 − 202. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.02.0182
    [3]
    徐昕宇, 李永乐, 廖海黎, 等. 双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验[J]. 工程力学, 2017, 34(5): 142 − 147. doi: 10.6052/j.issn.1000-4750.2015.12.0953

    XU Xinyu, LI Yongle, LIAO Haili, et al. Flutter optimization of a double-deck truss-stiffened girder three-tower suspension bridge by wind tunnel tests [J]. Engineering Mechanics, 2017, 34(5): 142 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.12.0953
    [4]
    林阳, 封周权, 华旭刚, 等. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192 − 200. doi: 10.6052/j.issn.1000-4750.2019.03.0143

    LIN Yang, FENG Zhouquan, HUA Xugang, et al. Artificial bee colony algorithm for flutter derivatives identification of bridge decks using free vibration records [J]. Engineering Mechanics, 2020, 37(2): 192 − 200. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0143
    [5]
    TANG H J, LI Y L, WANG Y F, et al. Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 260 − 270. doi: 10.1016/j.jweia.2017.06.013
    [6]
    ANDERSEN M S, ØISETH O, JOHANSSON J, et al. Flutter derivatives from free decay tests of a rectangular B/D=10 section estimated by optimized system identification methods [J]. Engineering Structures, 2018, 156: 284 − 293. doi: 10.1016/j.engstruct.2017.11.059
    [7]
    牛华伟, 陈政清. 桥梁主梁断面18个颤振导数识别的三自由度强迫振动法[J]. 土木工程学报, 2014, 47(4): 75 − 83.

    NIU Huawei, CHEN Zhengqing. Three degrees-of-freedom forced vibration method for identifying eighteen flutter derivatives of bridge decks [J]. China Civil Engineering Journal, 2014, 47(4): 75 − 83. (in Chinese)
    [8]
    CHU X L, CUI W, LIU P, et al. Bayesian spectral density approach for identification of bridge section’s flutter derivatives operated in turbulent flow [J]. Mechanical Systems and Signal Processing, 2022, 170: 108782. doi: 10.1016/j.ymssp.2021.108782
    [9]
    SCANLAN R H, TOMKO J J. Airfoil and bridge deck flutter derivatives [J]. Journal of the Engineering Mechanics Division, 1971, 97(6): 1717 − 1737. doi: 10.1061/JMCEA3.0001526
    [10]
    SHINOZUKA M, YUN C, IMAI H. Identification of linear structural dynamic systems [J]. Journal of the Engineering Mechanics Division, 1982, 108(6): 1371 − 1390. doi: 10.1061/JMCEA3.0002909
    [11]
    YAMADA H, MIYATA T, ICHIKAWA H. Measurement of aerodynamic coefficients by system identification methods [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1/2/3): 1255 − 1263.
    [12]
    SARKAR P P, JONES N P, SCANLAN R H. Identification of aeroelastic parameters of flexible bridges [J]. Journal of Engineering Mechanics, 1994, 120(8): 1718 − 1742. doi: 10.1061/(ASCE)0733-9399(1994)120:8(1718)
    [13]
    张若雪. 桥梁结构气动参数识别的理论和试验研究[D]. 上海: 同济大学, 1998: 1 − 86.

    ZHANG Ruoxue. Theoretical and experimental study on identification of aerodynamic derivatives of bridge decks [D]. Shanghai: Tongji University, 1998: 1 − 86. (in Chinese)
    [14]
    丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析[D]. 上海: 同济大学土木工程学院, 2001: 10 − 90.

    DING Quanshun. Refinement of coupled flutter and buffeting analysis for long-span bridges [D]. Shanghai: Tongji University, 2001: 10 − 90. (in Chinese)
    [15]
    李加武, 张斐, 吴拓. 桥梁断面颤振导数识别的加权最小二乘法[J]. 振动工程学报, 2017, 30(6): 993 − 1000.

    LI Jiawu, ZHANG Fei, WU Tuo. Weighted least square method for identification of flutter derivatives of bridge section [J]. Journal of Vibration Engineering, 2017, 30(6): 993 − 1000. (in Chinese)
    [16]
    李永乐, 廖海黎, 强士中. 桥梁断面颤振导数识别的加权整体最小二乘法[J]. 土木工程学报, 2004, 37(3): 80 − 84.

    LI Yongle, LIAO Haili, QIANG Shizhong. Identification for flutter derivatives of bridge deck cross section by weighting ensemble least-square method [J]. China Civil Engineering Journal, 2004, 37(3): 80 − 84. (in Chinese)
    [17]
    韩萌, 常召群, 邢国华, 等. 布设自复位SMA摩擦阻尼器的框架结构减震优化设计方法研究[J]. 工程力学, 2023, 40(7): 111 − 120. doi: 10.6052/j.issn.1000-4750.2021.11.0912

    HAN Meng, CHANG Zhaoqun, XING Guohua, et al. Seismic design optimization of frame structure with self-centering SMA friction damper [J]. Engineering Mechanics, 2023, 40(7): 111 − 120. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.11.0912
    [18]
    李远平, 蔡远利, 李济生. 基于改进粒子群算法的月地转移轨道优化[J]. 工程力学, 2020, 37(3): 238 − 244. doi: 10.6052/j.issn.1000-4750.2019.04.0176

    LI Yuanping, CAI Yuanli, LI Jisheng. Moon-to-earth transfer trajectory optimization base on modified particle swarm optimization [J]. Engineering Mechanics, 2020, 37(3): 238 − 244. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0176
    [19]
    庄亮东, 杨悦, 吴桢灏. 遗传算法在Y型偏心支撑组合框架抗震性能优化中的应用研究[J]. 工程力学, 2023, 40(7): 185 − 195. doi: 10.6052/j.issn.1000-4750.2021.11.0934

    ZHUANG Liangdong, YANG Yue, WU Zhenhao. The application of genetic algorithm in seismic performance optimization of y-shape eccentrically braced composite frame [J]. Engineering Mechanics, 2023, 40(7): 185 − 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.11.0934
    [20]
    ZHANG X M, LIN Q Y, MAO W T, et al. Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization [J]. Applied Soft Computing, 2021, 101: 107061. doi: 10.1016/j.asoc.2020.107061
    [21]
    曹树谦, 张文德, 萧龙翔. 振动结构模态分析[M]. 2版. 天津: 天津大学出版社, 2014: 1 − 247.

    CAO Shuqian, ZHANG Wende, XIAO Longxiang. Modal analysis of vibration structures [M]. 2nd ed. Tianjin: Tianjin University Press, 2014: 1 − 247. (in Chinese)
    [22]
    MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69: 46 − 61. doi: 10.1016/j.advengsoft.2013.12.007
    [23]
    陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005: 1 − 200.

    CHEN Zhenqing. Bridge wind engineering [M]. Beijing: China Communications Press, 2005: 1 − 200. (in Chinese)
    [24]
    夏飞龙, 王林凯, 刘志文, 等. 识别桥梁断面颤振临界风速的一种新方法[J]. 公路, 2019, 64(8): 59 − 65.

    XIA Feilong, WANG Linkai, LIU Zhiwen, et al. A new method for identifying flutter critical wind speed of bridges section [J]. Highway, 2019, 64(8): 59 − 65. (in Chinese)

Catalog

    Article Metrics

    Article views (137) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return