Citation: | WANG Hui, WANG Le, TIAN Xin-hai. STRUCTURAL HEALTH MONITORING BASED ON CORRELATION FUNCTION MATRIX AND CONVOLUTIONAL NEURAL NETWORK[J]. Engineering Mechanics, 2023, 40(5): 217-227. DOI: 10.6052/j.issn.1000-4750.2022.01.0016 |
[1] |
FANG F, QIU L, YUAN S F, et al. Dynamic probability modeling-based aircraft structural health monitoring framework under time-varying conditions: Validation in an in-flight test simulated on ground [J]. Aerospace Science and Technology, 2019, 95: 105467. doi: 10.1016/j.ast.2019.105467
|
[2] |
翁顺, 朱宏平. 基于有限元模型修正的土木结构损伤识别方法[J]. 工程力学, 2021, 38(3): 1 − 16. doi: 10.6052/j.issn.1000-4750.2020.06.ST02
WENG Shun, ZHU Hongping. Damage identification of civil structures based on finite element model updating [J]. Engineering Mechanics, 2021, 38(3): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.ST02
|
[3] |
侯博文, 李佳静, 高亮, 等. 基于脉冲激励下钢轨振动响应的扣件失效识别方法[J]. 工程力学, 2021, 38(2): 122 − 133. doi: 10.6052/j.issn.1000-4750.2020.04.0210
HOU Bowen, LI Jiajing, GAO Liang, et al. Failure identification method of fastening system based on rail response under pulse excitation [J]. Engineering Mechanics, 2021, 38(2): 122 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0210
|
[4] |
YANG Z C, WANG L, WANG H, et al. Damage detection in composite structures using vibration response under stochastic excitation [J]. Journal of Sound and Vibration, 2009, 325(4-5): 755 − 768. doi: 10.1016/j.jsv.2009.03.040
|
[5] |
BAO Y Q, CHEN Z C, WEI S Y, et al. The state of the art of data science and engineering in structural health monitoring [J]. Engineering, 2019, 5(2): 234 − 242. doi: 10.1016/j.eng.2018.11.027
|
[6] |
韩小雷, 冯润平, 季静, 等. 基于深度学习的RC梁集中塑性铰模型参数研究[J]. 工程力学, 2021, 38(11): 160 − 169. doi: 10.6052/j.issn.1000-4750.2020.11.0793
HAN Xiaolei, FENG Runping, JI Jing, et al. Research on parameters of the RC beam lumped plastic hinge model based on deep learning [J]. Engineering Mechanics, 2021, 38(11): 160 − 169. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0793
|
[7] |
陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480.
CHEN Haixin, DENG Kaiwen, LI Runze. Utilization of machine learning technology in aerodynamic optimization [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480. (in Chinese)
|
[8] |
战庆亮, 葛耀君, 白春锦. 流场特征识别的无量纲时程深度学习方法[J]. 工程力学, 2023, 40(2): 17 − 24. doi: 10.6052/j.issn.1000-4750.2021.08.0638
ZHAN Qingliang, GE Yaojun, BAI Chunjin. Deep learning method for flow field feature recognition based on dimensionless time history [J]. Engineering Mechanics, 2023, 40(2): 17 − 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0638
|
[9] |
何定桥, 王鹏军, 杨军. 深度神经网络在EMD虚假分量识别中的应用[J]. 工程力学, 2021, 38(增刊): 195 − 201. doi: 10.6052/j.issn.1000-4750.2020.04.S036
HE Dingqiao, WANG Pengjun, YANG Jun. Application of deep neural networks in EMD false component identification [J]. Engineering Mechanics, 2021, 38(Suppl): 195 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.S036
|
[10] |
ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring [J]. Mechanical Systems and Signal Processing, 2019, 115(1): 213 − 237.
|
[11] |
杨娜, 张翀, 李天昊. 基于无人机与计算机视觉的中国古建筑木结构裂缝监测系统设计[J]. 工程力学, 2021, 38(3): 27 − 39. doi: 10.6052/j.issn.1000-4750.2020.04.0263
YANG Na, ZHANG Chong, LI Tianhao. Design of crack monitoring system for Chinese ancient wooden buildings based on UAV and CV [J]. Engineering Mechanics, 2021, 38(3): 27 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0263
|
[12] |
RUBIO J J, KASHIWA T, LAITEERAPONG T, et al. Multi-class structural damage segmentation using fully convolutional networks [J]. Computers in Industry, 2019, 112: 103121. doi: 10.1016/j.compind.2019.08.002
|
[13] |
BECKMAN G H, POLYZOIS D, CHA Y J. Deep learning-based automatic volumetric damage quantification using depth camera [J]. Automation in Construction, 2019, 99: 114 − 124. doi: 10.1016/j.autcon.2018.12.006
|
[14] |
XU Y, WEI S Y, BAO Y Q, et al. Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network [J]. Structural Control and Health Monitoring, 2019, 26: e2313. doi: 10.1002/stc.2313
|
[15] |
MEI Q P, GÜL M, AZIM M R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection [J]. Automation in Construction, 2020, 110: 103018. doi: 10.1016/j.autcon.2019.103018
|
[16] |
JANG K, KIM N, AN Y K. Deep learning-based autonomous concrete crack evaluation through hybrid image scanning [J]. Structural Health Monitoring, 2019, 18: 1722 − 1737. doi: 10.1177/1475921718821719
|
[17] |
DENG W L, MOU Y L, KASHIWA T, et al. Vision based pixel-level bridge structural damage detection using a link ASPP network [J]. Automation in Construction, 2020, 110: 102973. doi: 10.1016/j.autcon.2019.102973
|
[18] |
CHEN L T, XU G H, ZHANG S C, et al. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks [J]. Journal of Manufacturing Systems, 2020, 54: 1 − 11. doi: 10.1016/j.jmsy.2019.11.008
|
[19] |
MARTIN G S, DROGUETT E L, MERUANEM V, et al. Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis [J]. Structural Health Monitoring, 2018, 18: 1092 − 1128.
|
[20] |
ABDELJABER O, AVCI O, KIRANYAZ S, et al. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks [J]. Journal of Sound and Vibration, 2017, 388: 154 − 170. doi: 10.1016/j.jsv.2016.10.043
|
[21] |
ABDELJABER O, AVCI O, KIRANYAZ M S, et al. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data [J]. Neurocomputing, 2018, 275: 1308 − 1317. doi: 10.1016/j.neucom.2017.09.069
|
[22] |
ZHANG Y Q, MIYAMORI Y, MIKAMI S, et al. Vibration‐based structural state identification by a 1‐dimensional convolutional neural network [J]. Computer‐Aided Civil and Infrastructure Engineering, 2019, 34: 822 − 839. doi: 10.1111/mice.12447
|
[23] |
LIU J X, CHEN S H, BERGES M, et al. Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction [J]. Mechanical Systems and Signal Processing, 2020, 1368: 106454.
|
[24] |
ZHANG X, WANG H, HOU B R, et al. 1D-CNN-based damage identification method based on piezoelectric impedance using adjustable inductive shunt circuitry for data enrichment [J]. Structural Health Monitoring, 2022, doi: 10.1177/14759217211049720
|
[25] |
LIN M X, GOU S J, HE S, et al. Structure health monitoring of a composite wing based on flight load and strain data using deep learning method [J]. Composite Structures, 2022, 286: 115305. doi: 10.1016/j.compstruct.2022.115305
|
[26] |
SEVENTEKIDIS P, GIAGOPOULOS D. A combined finite element and hierarchical deep learning approach for structural health monitoring: Test on a pin-joint composite truss structure [J]. Mechanical Systems and Signal Processing, 2021, 157: 107735. doi: 10.1016/j.ymssp.2021.107735
|
[27] |
WANG L, YANG Z C, WATERS T P. Structural damage detection using cross correlation functions of vibration response [J]. Journal of Sound and Vibration, 2010, 329(24): 5070 − 5086. doi: 10.1016/j.jsv.2010.06.020
|
[28] |
王慧, 郭晨林, 王乐, 等. 基于内积矩阵及深度学习的结构健康监测研究[J]. 工程力学, 2022, 39(2): 14 − 22. doi: 10.6052/j.issn.1000-4750.2020.12.0935
WANG Hui, GUO Chenlin, WANG Le, et al. Structural health monitoring based inner product matrix and deep learning [J]. Engineering Mechanics, 2022, 39(2): 14 − 22. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0935
|
[29] |
张敏照, 王乐, 田鑫海. 基于内积矩阵及卷积自编码器的螺栓松动状态监测[J]. 工程力学, 2022, 39(12): 222 − 231. doi: 10.6052/j.issn.1000-4750.2021.07.0583
ZHANG Minzhao, WANG Le, TIAN Xinhai. Bolt loosening state monitoring based on inner product matrix and convolutional autoencoder [J]. Engineering Mechanics, 2022, 39(12): 222 − 231. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0583
|
[30] |
王慧, 王乐, 田润泽. 基于时域响应相关性分析及数据融合的结构损伤检测研究[J]. 工程力学, 2020, 37(9): 30 − 37, 111. doi: 10.6052/j.issn.1000-4750.2019.10.0588
WANG Hui, WANG Le, TIAN Runze. Structural damage detection using correlation functions of time domain vibration responses and data fusion [J]. Engineering Mechanics, 2020, 37(9): 30 − 37, 111. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0588
|
[31] |
JAMES III G H, CARNE T G, LAUFFER J P, et al. The natural excitation technique (NExT) for modal parameter extraction from operating structures [J]. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4): 260 − 277.
|
[32] |
CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning - based crack damage detection using convolutional neural networks [J]. Computer - Aided Civil and Infrastructure Engineering, 2017, 32(5): 361 − 378. doi: 10.1111/mice.12263
|
[33] |
CHANG Y H, CHEN J L, QU C, et al. Intelligent fault diagnosis of wind turbines via a deep learning network using parallel convolution layers with multi-scale kernels [J]. Renewable Energy, 2020, 153(1): 205 − 213.
|
[34] |
唐和生, 何展朋, 廖洋洋, 等. 基于物理驱动深度迁移学习的薄板力学正反问题 [J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.12.0977.
TANG Hesheng, HE Zhanpeng, LIAO Yangyang, et al. Forward and inverse problems of thin plate mechanics based on physics-informed deep transfer learning [J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.12.0977. (in Chinese)
|