Citation: | MIAO Hui-quan, ZHONG Zi-lan, HOU Ben-wei, HAN Jun-yan, DU Xiu-li. DYNAMIC SEISMIC RESILIENCE ASSESSMENT METHOD FOR WATER DISTRIBUTION NETWORKS BASED ON SYSTEM DYNAMICS[J]. Engineering Mechanics, 2023, 40(12): 99-112. DOI: 10.6052/j.issn.1000-4750.2022.02.0154 |
Urban water distribution network is an important part of lifeline engineering. With the development of the research and construction of resilient cities, it becomes a practical need to re-examine the comprehensive disaster prevention and mitigation capability of water distribution networks from the perspective of resilient cities and to establish a quantitative resilience assessment method that can effectively reflect the post-earthquake recovery process of water distribution networks. A characterization of the four-stage recovery process of water distribution networks after an earthquake was proposed based on the investigation of the typical post-earthquake recovery process of water distribution networks. Then, a dynamic seismic resilience assessment method for water distribution networks at the emergency and relief stages was proposed based on system dynamics theory. This method can not only effectively reflect the changing characteristics of water demand requirements from crowd and fire after an earthquake disaster, but also effectively assess the impact of rescue resources on the functional recovery of the network, and finally realize the dynamic seismic resilience assessment of the water distribution network.
[1] |
SCAWTHORN C, O’ROURKE T D, BLACKBURN F T. The 1906 San Francisco earthquake and fire-enduring lessons for fire protection and water supply [J]. Earthquake Spectra, 2006, 22(Suppl 2): 135 − 158.
|
[2] |
OTANI S. The dawn of structural earthquake engineering in Japan [C]. Beijing: ASCE, 2008: 1 − 8.
|
[3] |
DUKE C M, MORAN D F. Guidelines for evolution of lifeline earthquake engineering [C]. Ann Arbor, Michigan: ASCE, 1975: 367 − 376.
|
[4] |
刘恢先. 唐山大地震震害(三) [M]. 北京: 地震出版社, 1985.
LIU Huixian. The great tangshan earthquake of 1976 (Volume Three) [M]. Beijing: Seismological Press, 1985. (in Chinese)
|
[5] |
期刊编辑部. 科学家介绍-王前信研究员[J]. 世界地震工程, 1987(3): 73 − 74, 68.
Journal Editorial Board. Scientist introduction-researcher Qianxin Wang [J]. World Earthquake Engineering, 1987(3): 73 − 74, 68. (in Chinese)
|
[6] |
O’ROURKE T D. Critical infrastructure, interdependencies, and resilience [J]. Engineering for the Threat of Natural Disasters, 2007, 37(1): 22 − 29.
|
[7] |
OBAMA B. Presidential policy Directive 8: National preparedness (PPD-8) [R]. Washington, D. C.: National Security Council, 2011.
|
[8] |
OBAMA B. Presidential policy directive 21: Critical infrastructure security and resilience (PPD-21) [R]. Washington, D. C.: National Security Council, 2013.
|
[9] |
ALCARAZ C, ZEADALLY S. Critical infrastructure protection: Requirements and challenges for the 21st century [J]. International Journal of Critical Infrastructure Protection, 2015, 8: 53 − 66. doi: 10.1016/j.ijcip.2014.12.002
|
[10] |
DAMELIN E, SHAMIR U, ARAD N. Engineering and economic evaluation of the reliability of water supply [J]. Water Resources Research, 1972, 8(4): 861 − 877. doi: 10.1029/WR008i004p00861
|
[11] |
SHINOZUKA M, TAKADA S, ISHIKAWA H. Seismic risk analysis of underground lifeline systems with the aid of damage probability matrix (NSF-PFR-78-15049-CU-2) [R]. Alexandria, Virginia: The National Science Foundation, 1978.
|
[12] |
BAO Y, MAYS L W. Model for water distribution system reliability [J]. Journal of Hydraulic Engineering, 1991, 116(9): 1119 − 1137.
|
[13] |
SHI P, O’ROURKE T D. Seismic response modeling of water supply systems [M]. New York: MCEER, University at Buffalo, 2008.
|
[14] |
李杰. 生命线工程抗震——基础理论与应用[M]. 北京: 科学出版社, 2005.
LI Jie. Earthquake resistance of lifeline engineering-- Basic theory and application [M]. Beijing: Science Press, 2005. (in Chinese)
|
[15] |
侯本伟, 杜修力. 基于搜索空间缩减策略的供水管网抗震设计参数优化[J]. 中国科学: 技术科学, 2015, 45(7): 747 − 756. doi: 10.1360/N092014-00235
HOU Benwei, DU Xiuli. A heuristic search space reduction method for water distribution system seismic design optimization [J]. Scientia Sinaica Technologica, 2015, 45(7): 747 − 756. (in Chinese) doi: 10.1360/N092014-00235
|
[16] |
李杰, 宋建学. 地震灾场的模拟与模拟控制问题研究(II)地震灾场的模拟控制[J]. 地震工程与工程振动, 1996, 16(4): 21 − 29.
LI Jie, SONG Jianxue. Study on system simulation and simulation -based control for earthquake disaster field (II): Simulation-based control of earthquake disaster field [J]. Earthquake Engineering and Engineering Vibration, 1996, 16(4): 21 − 29. (in Chinese)
|
[17] |
缪惠全, 钟紫蓝, 杜修力. 基于CiteSpace的韧性城市视角下耦合基础设施文献的量化分析[J]. 自然灾害学报, 2021, 30(5): 12 − 27.
MIAO Huiquan, ZHONG Zilan, DU Xiuli. Literature review on interdependent infrastructures based on CiteSpace from the perspective of resilient cities [J]. Journal of Natural Disasters, 2021, 30(5): 12 − 27. (in Chinese)
|
[18] |
MIAO H, LIU W, LI J. Seismic reliability analysis of water distribution networks on the basis of the probability density evolution method [J]. Structural Safety, 2020, 86: 101960-1 − 101960-16.
|
[19] |
MIAO H, LI J. Serviceability evaluation of water supply networks under seismic loads utilizing their operational physical mechanism [J]. Earthquake Engineering and Engineering Vibration, 2022, 21(1): 283 − 296. doi: 10.1007/s11803-022-2084-5
|
[20] |
MARSDEN J. Improving infrastructure resilience to extreme events : Lessons from Katrina and Sandy [C]. Phoenix, Arizona: Sustainable Cognoscente Network, 2016.
|
[21] |
中华人民共和国中央人民政府. 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议 [EB]. http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm, 2020-11-06.
|
[22] |
缪惠全, 李杰. 基于物理机制的供水管网抗震功能实时动态分析[J]. 地震工程与工程振动, 2018, 38(3): 20 − 29.
MIAO Huiquan, LI Jie. The real-time kinematic analysis of water supply networks seismic serviceability based on physical mechanism [J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(3): 20 − 29. (in Chinese)
|
[23] |
翟长海, 刘文, 谢礼立. 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39(9): 1 − 9.
ZHAI Changhai, LIU Wen, XIE Lili. Progress of research on city seismic resilience evaluation [J]. Journal of Building Structures, 2018, 39(9): 1 − 9. (in Chinese)
|
[24] |
GB/T 38591−2020, 建筑抗震韧性评价标准[S]. 北京: 中国标准出版社, 2020.
GB/T 38591−2020, Standard for seismic resilience assessment of buildings [S]. Beijing: China Standard Press, 2020. (in Chinese)
|
[25] |
SHUANG Q, LIU H J, PORSE E. Review of the quantitative resilience methods in water distribution networks [J]. Water (Switzerland), 2019, 11(6): 1189-1 − 1189-27.
|
[26] |
LIU W, SONG Z. Review of studies on the resilience of urban critical infrastructure networks [J]. Reliability Engineering and System Safety, 2020, 193: 106617-1 − 106617-16.
|
[27] |
宗成才, 冀昆, 温瑞智, 等. 城市燃气管网三维度抗震韧性定量评估方法[J]. 工程力学, 2021, 38(2): 146 − 156. doi: 10.6052/j.issn.1000-4750.2020.04.0219
ZONG Chengcai, JI Kun, WEN Ruizhi, et al. Three-dimensional seismic resilience quantification framework for the urban gas network [J]. Engineering Mechanics, 2021, 38(2): 146 − 156. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0219
|
[28] |
WOOLF S, TWIGG J, PARIKH P, et al. Towards measurable resilience: A novel framework tool for the assessment of resilience levels in slums [J]. International Journal of Disaster Risk Reduction, 2016, 19: 280 − 302. doi: 10.1016/j.ijdrr.2016.08.003
|
[29] |
CIMELLARO GI P, RENSCHLER C, REINHORN A M, et al. PEOPLES: A framework for evaluating resilience [J]. Journal of Structural Engineering, 2004, 142(10): 04016063-1 − 04016063-13.
|
[30] |
ARUP. City resilience index [EB]. https://www.arup.com/ perspectives/city-resilience-index, 2020-05-04.
|
[31] |
缪惠全, 王乃玉, 汪英俊, 等. 基于灾后恢复过程解析的城市韧性评价体系[J]. 自然灾害学报, 2021, 30(1): 10 − 27.
MIAO Huiquan, WANG Naiyu, WANG Yingjun, et al. An urban resilience measurement system based on decomposing post-disaster recovery process [J]. Journal of Natural Hazards, 2021, 30(1): 10 − 27. (in Chinese)
|
[32] |
詹栩怡, 刘书明, 于喜鹏, 等. 供水管网韧性评估方法研究[J]. 给水排水, 2020, 46(6): 141 − 145.
ZHAN Xuyi, LIU Shuming, YU Xipeng, et al. Study on water distribution network resilience assessment method [J]. Water & Wastewater Engineering, 2020, 46(6): 141 − 145. (in Chinese)
|
[33] |
Center of Excellence for Risk-Based Community Resilience Planning (COE). IN-CORE (Interdependent networked community resilience modeling environment) [EB]. https://incore.ncsa.illinois.edu/, 2021-01-25.
|
[34] |
YOO D, JUNG D, KANG D, et al. Seismic hazard assessment model for urban water supply networks [J]. Journal of Water Resources Planning and Management, 2016, 142(2): 04015055-1 − 04015055-14.
|
[35] |
KLISE K A, BYNUM M, MORIARTY D, et al. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study [J]. Environmental Modelling and Software, 2017, 95: 420 − 431. doi: 10.1016/j.envsoft.2017.06.022
|
[36] |
LIU W, SONG Z, OUYANG M, et al. Recovery-based seismic resilience enhancement strategies of water distribution networks [J]. Reliability Engineering and System Safety, 2020, 203: 107088-1 − 107088-10.
|
[37] |
SIRSANT S, REDDY M J. Assessing the performance of surrogate measures for water distribution network reliability [J]. Journal of Water Resources Planning and Management, 2020, 146(7): 0402004-1 − 0402004-15.
|
[38] |
PAGANO A, PLUCHINOTTA I, GIORDANO R, et al. Integrating hard and soft infrastructural resilience assessment for water distribution systems [J]. Complexity, 2018, 2018: 3074791-1 − 3074791-16.
|
[39] |
POLJANSEK K, BONO F, GUTTERREZ E. Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks [J]. Earthquake Engineering & Structural Dynamics, 2012, 41: 61 − 69.
|
[40] |
LU X, BENGTSSON L, HOLME P. Predictability of population displacement after the 2010 Haiti earthquake [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11576 − 11581. doi: 10.1073/pnas.1203882109
|
[41] |
COSTA R, HAUKAAS T, CHANG S E. Predicting population displacements after earthquakes [J]. Sustainable and Resilient Infrastructure, 2020, 6: 1 − 19.
|
[42] |
NOZHATI S, ROSENHEIM N, ELLINGWOOD B R, et al. Probabilistic framework for evaluating food security of households in the aftermath of a disaster [J]. Structure and Infrastructure Engineering, 2019, 15(8): 1060 − 1074. doi: 10.1080/15732479.2019.1584824
|
[43] |
FEMA/NIBS. Multi-hazard loss estimation methodology eathquake model (HAZUS-MH 2.1) [M]. Washington, D. C.: Department of Homeland Security, Federal Emergency Management Agency Mitigation Division, 2015.
|
[44] |
李杰, 江建华. 城市地震次生火灾危险性分析[J]. 自然灾害学报, 2000, 9(2): 87 − 92. doi: 10.3969/j.issn.1004-4574.2000.02.014
LI Jie, JIANG Jianhua. Hazard analysis of urban post-earthquake fire [J]. Journal of Natural Hazards, 2000, 9(2): 87 − 92. (in Chinese) doi: 10.3969/j.issn.1004-4574.2000.02.014
|
[45] |
秘义行, 杜霞, 黄鑫, 等. 商业建筑一次火灾消防用水量研究[J]. 消防科学与技术, 2008, 27(12): 882 − 885. doi: 10.3969/j.issn.1009-0029.2008.12.006
MI Yixing, DU Xia, HUANG Xin, et al. Study on fire fighting water flow requirement for commercial buildings [J]. Fire Science and Technology, 2008, 27(12): 882 − 885. (in Chinese) doi: 10.3969/j.issn.1009-0029.2008.12.006
|
[46] |
丁宝荣, 孙景江, 杜轲等. 地震烈度与峰值加速度、峰值速度相关性研究[J]. 地震工程与工程振动, 2017, 37(2): 26 − 36.
DING Baorong, SUN Jingjiang, DU Ke, et al. Study on relationships between seismic intensity and peak ground acceleration, peak ground velocity [J]. Earthquake Engineering and Engineering Vibration, 2017, 37(2): 26 − 36. (in Chinese)
|
[47] |
刘遂庆, 郑小明, 李伟, 等. 汶川特大地震中城镇供水系统地震灾害与抗震救灾调查报告[M]. 上海: 同济大学出版社, 2013.
LIU Suiqing, ZHENG Xiaoming, LI Wei, et al. Investigation report on seismic hazards and earthquake relief of urban water supply systems in the Wenchuan earthquake [M]. Shanghai: Tongji University Press, 2013. (in Chinese)
|
[48] |
闫盈全. 非常使命: 中国“5·12”抗震救灾审计纪实[M]. 北京: 时代经济出版社, 2009.
YAN Yingquan. The extraordinary mission: A chronicle of China's "5·12" earthquake relief audit [M]. Beijing: Times Economic Publishing House, 2009. (in Chinese)
|
[49] |
DB11/T 1891−2021, 建(构)筑物与应急设施地震安全韧性建设指南[S]. 北京: 中国标准出版社, 2021.
DB11/T 1891−2021, Guidelines for building (structures) and emergency facility earthquake safety resilience [S]. Beijing: China Standard Press, 2021. (in Chinese)
|
[50] |
匡文慧, 张树文, 张养贞. 基于遥感影像的长春城市用地建筑面积估算[J]. 重庆建筑大学学报, 2007, 29(1): 18 − 21.
KUANG Wenhui, ZHANG Shuwen, ZHANG Yangzhen. Research on estimating urban land use floor area in Changchun based on high resolution satellite images [J]. Journal of Chongqing Jianzhu University, 2007, 29(1): 18 − 21. (in Chinese)
|
[51] |
镇江市自来水有限责任公司. 企业概况—镇江市自来水有限责任公司 [EB]. https://www.zhenjiangwater.com.cn/Profile.html, 2022-01-23.
|
[52] |
潇湘晨报. 347名自来水维修人员驻守一线 [EB].https://www.zhenjiangwater.com.cn/Profile.html, 2022-01-23.
|
[53] |
缪惠全, 李杰. 基于物理机制的随机地震动场中供水管网抗震功能反应分析[J]. 工程力学, 2022, 39(7): 99 − 108, 204. doi: 10.6052/j.issn.1000-4750.2021.04.0243
MIAO Huiquan, LI Jie. The seismic response of water supply networks in random seismic fields based on physical mechanisms [J]. Engineering Mechanics, 2022, 39(7): 99 − 108, 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0243
|