ZHANG Xiao-cun, MAO Ming, LI Yu-shun. CALCULATION METHOD AND EXPERIMENTAL STUDY ON BENDING DEFLECTION OF PRESTRESSED STEEL-BAMBOO COMPOSITE BEAMS[J]. Engineering Mechanics, 2023, 40(1): 201-211, 228. DOI: 10.6052/j.issn.1000-4750.2021.08.0611
Citation: ZHANG Xiao-cun, MAO Ming, LI Yu-shun. CALCULATION METHOD AND EXPERIMENTAL STUDY ON BENDING DEFLECTION OF PRESTRESSED STEEL-BAMBOO COMPOSITE BEAMS[J]. Engineering Mechanics, 2023, 40(1): 201-211, 228. DOI: 10.6052/j.issn.1000-4750.2021.08.0611

CALCULATION METHOD AND EXPERIMENTAL STUDY ON BENDING DEFLECTION OF PRESTRESSED STEEL-BAMBOO COMPOSITE BEAMS

More Information
  • Received Date: August 07, 2021
  • Revised Date: November 10, 2021
  • Available Online: November 18, 2021
  • To investigate the bending deflection of prestressed steel-bamboo composite beams, twelve composite beams were designed and tested with loading mode, prestressing position and prestressing level as variables. Based on the assumed half-wave sine curve for the deformation distribution and taking the consideration of the influence of geometric change and prestressing camber of the beam in the loading process, a method for calculating the stress increment of prestressed strands in composite beams is established using the elastic theory. A unified formula for calculating the bending deflection of composite beams under one-point or two-point loading (prestressing) schemes is also developed. The comparison between the experimental and theoretical results indicates that: the proposed method can provide suitable estimations for the deflection of composite beams in the serviceability limit state. With the increase of the prestressing level, the equivalent bending stiffness of composite beams increases continuously, and higher equivalent bending stiffness can be obtained when two-point prestressing scheme is applied. Moreover, For the specimens with zero initial prestress, reliable pre-tightening measures should be adopted to ensure that the external prestressing strands can play an effective role.
  • [1]
    ZHANG X, XU J, ZHANG X, et al. Life cycle carbon emission reduction potential of a new steel-bamboo composite frame structure for residential houses [J]. Journal of Building Engineering, 2021, 39: 102295. doi: 10.1016/j.jobe.2021.102295
    [2]
    田黎敏, 靳贝贝, 郝际平. 现代竹结构的研究与工程应用[J]. 工程力学, 2019, 36(5): 1 − 18, 27. doi: 10.6052/j.issn.1000-4750.2018.06.ST06

    TIAN Limin, JIN Beibei, HAO Jiping. Research and application of modern bamboo structures [J]. Engineering Mechanics, 2019, 36(5): 1 − 18, 27. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.ST06
    [3]
    邬沛, 李玉顺, 许达, 等. 基于遗传算法的钢-竹组合工字形梁截面优化设计[J]. 建筑结构学报, 2020, 41(1): 149 − 155.

    WU Pei, LI Yunshun, XU Da, et al. Multi-objective optimal section design of I-shaped section steel-bamboo composite beam using genetic algorithm [J]. Journal of Building Structure, 2020, 41(1): 149 − 155. (in Chinese)
    [4]
    茅鸣, 童科挺, 张家亮, 等. 钢-竹组合工字形柱偏心受压力学性能试验研究[J/OL]. 建筑结构学报, 2020: https://doi.org/10.14006/j.jzjgxb.2019.0414.

    MAO Ming, TONG Keting, ZHANG Jialiang, et al. Experimental study on mechanical performance of steel-bamboo combination I-section column under eccentric loading [J/OL]. Journal of Building Structure, 2020: https:// doi.org/10.14006/j.jzjgxb.2019.0414. (in Chinese)
    [5]
    李玉顺, 张家亮, 童科挺, 等. 钢-竹组合工字形梁界面滑移及变形分析[J]. 工程力学, 2018, 35(7): 150 − 158, 166. doi: 10.6052/j.issn.1000-4750.2017.03.0215

    LI Yushun, ZHANG Jialiang, TONG Keting, et al. Study on interface slip and deformation of bamboo-steel composite I-beams [J]. Engineering Mechanics, 2018, 35(7): 150 − 158, 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0215
    [6]
    LI Y S, YAO J, LI R, et al. Thermal and energy performance of a steel-bamboo composite wall structure [J]. Energy and Buildings, 2017, 156: 225 − 237. doi: 10.1016/j.enbuild.2017.09.083
    [7]
    LI H, WU G, ZHANG Q, et al. Ultimate bending capacity evaluation of laminated bamboo lumber beams [J]. Construction and Building Material, 2018, 160: 365 − 375. doi: 10.1016/j.conbuildmat.2017.11.058
    [8]
    谢梦洁, 邹 昀, 王城泉, 等. 新型预应力外包波纹钢 -混凝土组合梁受弯性能试验研究[J]. 工程力学, 2021, 38(7): 64 − 74. doi: 10.6052/j.issn.1000-4750.2020.07.0461

    XIE Mengjie, ZOU Yun, WANG Chengquan, et al. Experiment study on bending behavior of novel prestressed steel-encased concrete composite beam with corrugated steel webs [J]. Engineering Mechanics, 2021, 38(7): 64 − 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0461
    [9]
    GUO N, XIONG H, WU M, et al. Long-term bending behaviour of prestressed glulam bamboo-wood beam based on creep effect[J]. Structural Durability & Health Monitoring, 2020, 14(3): 229 − 248.
    [10]
    宋彧, 杜永峰, 林厚秦, 等. 矩形截面预应力木梁受力性能的试验研究[J]. 甘肃工业大学学报, 1995, 21(3): 72 − 78.

    SONG Yu, DU Yongfeng, LIN Houqin, et al. Experimental investigation of force characteristics of prestressed wooden beam with rectangular cross-section [J]. Journal of Gansu University of Technology, 1995, 21(3): 72 − 78. (in Chinese)
    [11]
    左宏亮, 孙旭, 左煜, 等. 预应力配筋胶合木梁受弯性能试验[J]. 东北林业大学学报, 2016, 44(2): 42 − 46. doi: 10.3969/j.issn.1000-5382.2016.02.011

    ZUO Hongliang, SUN Xu, ZUO Yu, et al. Bending performance test on the prestressed reinforced glue-lumber beam [J]. Journal of Northeast Forestry University, 2016, 44(2): 42 − 46. (in Chinese) doi: 10.3969/j.issn.1000-5382.2016.02.011
    [12]
    左宏亮, 宋鑫, 郭楠, 等. 张弦及加载方式对预应力胶合木梁受弯性能的影响[J]. 东北林业大学学报, 2017, 45(2): 65 − 70. doi: 10.3969/j.issn.1000-5382.2017.02.014

    ZUO Hongliang, SONG Xin, GUO Nan, et al. Effect of jacking and loading methods on the bending performance of prestressed glue-lumber beams [J]. Journal of Northeast Forestry University, 2017, 45(2): 65 − 70. (in Chinese) doi: 10.3969/j.issn.1000-5382.2017.02.014
    [13]
    张晋, 王卫昌, 仇荣根, 等. 体内预应力胶合木梁短期受弯性能试验研究[J]. 土木工程学报, 2019, 52(5): 23 − 34.

    ZHANG Jin, WANG Weichang, QIU Ronggen, et al. Experimental study on short-term flexural behavior of internal prestressed glulam beams [J]. China Civil Engineering Journal, 2019, 52(5): 23 − 34. (in Chinese)
    [14]
    张晋, 沈浩, 高森, 等. 体内预应力胶合木梁抗弯承载能力研究[J]. 湖南大学学报(自然科学版), 2018, 45(5): 134 − 142.

    ZHANG Jin, SHEN Hao, GAO Sen, et al. Study on flexural capacity of internal prestressed glulam beams [J]. Journal of Hunan University (Nature Sciences), 2018, 45(5): 134 − 142. (in Chinese)
    [15]
    杨会峰, 朱文祥, 郝建东, 等. 体外预应力胶合木梁抗弯性能试验研究[J]. 南京工业大学学报(自然科学版), 2016, 38(5): 68 − 73, 93.

    YANG Huifeng, ZHU Wenxiang, HAO Jiandong, et al. Experimental study on the flexural behaviors of external prestressed glulam beams [J]. Journal of Nanjing Tech University (Nature Sciences Edition), 2016, 38(5): 68 − 73, 93. (in Chinese)
    [16]
    YANG H, LIU W, LU W, et al. Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation [J]. Construction and Building Materials, 2016, 109: 550 − 563.
    [17]
    YANG H, JU D, LIU W, et al. Prestressed glulam beams reinforced with CFRP bars [J]. Construction and Building Materials, 2016, 109: 73 − 83. doi: 10.1016/j.conbuildmat.2016.02.008
    [18]
    程勋煜, 魏洋, 徐扬, 等. 预应力FRP筋增强竹梁力学性能试验研究[J]. 建筑结构, 2018, 48(10): 108 − 113.

    CHENG Xunyu, WEI Yang, XU Yang, et al. Experimental study on mechanical properties of bamboo beam reinforced with prestressed FRP bars [J]. Building Structure, 2018, 48(10): 108 − 113. (in Chinese)
    [19]
    GUAN Z W, RODD P D, POPE D J. Study of glulam beams pre-stressed with pultruded GRP [J]. Computers & Structures, 2005, 83(28): 2476 − 2487.
    [20]
    BORRI A, CORRADI M, GRAZINI A. A method for flexural reinforcement of old wood beams with CFRP materials [J]. Composites Part B Engineering, 2005, 36(2): 143 − 153. doi: 10.1016/j.compositesb.2004.04.013
    [21]
    VAHEDIAN A, SHRESTHA R, CREWS K. Experimental and analytical investigation on CFRP strengthened glulam laminated timber beams: Full-scale experiments [J]. Composites Part B:Engineering, 2019, 164: 377 − 389. doi: 10.1016/j.compositesb.2018.12.007
    [22]
    DONADON B F, MASCIA N T, VILELA R, et al. Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement [J]. Engineering Structures, 2020, 202: 109818. doi: 10.1016/j.engstruct.2019.109818
    [23]
    贺志启, 刘钊, 王景全. 基于挠度的体外预应力梁应力增量统一算法[J]. 土木工程学报, 2008, 41(9): 90 − 96. doi: 10.3321/j.issn:1000-131X.2008.09.014

    HE Zhiqi, LIU Zhao, WANG Jingquan. A unified algorithm for calculating stress increment of external tendons based on deflection [J]. China Civil Engineering Journal, 2008, 41(9): 90 − 96. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.09.014
    [24]
    刘钊, 贺志启, 王景全. 基于能量法的体外预应力梁力筋应力增量研究[J]. 东南大学学报:自然科学版, 2008, 38(1): 136 − 140.

    LIU Zhao, HE Zhiqi, WANG Jingquan. Stress increment study of external tendons based on energy method [J]. Journal of Southeast University (Natural Science Edition), 2008, 38(1): 136 − 140. (in Chinese)
    [25]
    王宗林, 王彤, 张树仁. 体外预应力混凝土简支梁的极限强度分析[J]. 哈尔滨建筑大学学报, 2001, 34(1): 114 − 118.

    WANG Zonglin, WANG Tong, ZHANG Shuren. Ultimate strength analysis for external prestressed concrete beams [J]. Journal of Harbin University of C. E. & Architecture, 2001, 34(1): 114 − 118. (in Chinese)
  • Cited by

    Periodical cited type(4)

    1. 郝际平,许佳,田黎敏,栗蕾. 考虑弹性模量及截面尺寸变化的竹压杆稳定承载力研究. 工程力学. 2025(04): 78-86 . 本站查看
    2. 罗潇,莫纯. 预应力技术在建筑结构设计中的应用. 工程技术研究. 2024(04): 91-93 .
    3. 张敏,叶挺. 装配式钢-竹组合结构施工技术的应用. 四川水泥. 2024(12): 126-128 .
    4. 陈婷婷,王凯,成利,周加喜. 准零刚度驱动式压电低频振动能量采集方法. 力学学报. 2023(10): 2156-2167 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (311) PDF downloads (76) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return