ZHANG Min-zhao, WANG Le, TIAN Xin-hai. BOLT LOOSENING STATE MONITORING BASED ON INNER PRODUCT MATRIX AND CONVOLUTIONAL AUTOENCODER[J]. Engineering Mechanics, 2022, 39(12): 222-231. DOI: 10.6052/j.issn.1000-4750.2021.07.0583
Citation: ZHANG Min-zhao, WANG Le, TIAN Xin-hai. BOLT LOOSENING STATE MONITORING BASED ON INNER PRODUCT MATRIX AND CONVOLUTIONAL AUTOENCODER[J]. Engineering Mechanics, 2022, 39(12): 222-231. DOI: 10.6052/j.issn.1000-4750.2021.07.0583

BOLT LOOSENING STATE MONITORING BASED ON INNER PRODUCT MATRIX AND CONVOLUTIONAL AUTOENCODER

More Information
  • Received Date: July 28, 2021
  • Revised Date: December 03, 2021
  • Available Online: February 16, 2022
  • Bolt loosening of bolted connection structures can easily lead to structural failure. How to monitor the loosening state of bolts of a structure is a hot spot of current research. This paper uses the correlation analysis of structural vibration responses under environmental excitation and the deep learning technology, and studies a neural network model that uses both inner product matrix (IPM) and deep convolutional autoencoder (CAE), named inner product matrix and convolutional autoencoder (IPM-CAE) based deep learning model. This paper verifies the feasibility and effectiveness of the method through an experimental study on the bolt loosening state monitoring of a bolt connected plate. Compared with the convolutional neural network (CNN), stack autoencoder (SAE) and capsule network (CapsNet) using IPM, the proposed IPM-CAE method shows better network training convergence speed and recognition accuracy.
  • [1]
    朱梦杰, 任亮, 李宏男, 等. 基于iBeam3单元逆有限元法的冻土区管道变形研究[J]. 工程力学, 2022, 39: 1. doi: 10.6052/j.issn.1000-4750.2021.05.0334

    ZHU Mengjie, REN Liang, LI Hongnan, et al. Research on pipeline deformation in frozen soil area based on iBeam3 element inverse finite element method [J]. Engineering Mechanics, 2022, 39: 1. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0334
    [2]
    何定桥, 杨军. 基于HHT的结构模态参数自动化识别方法和试验验证[J]. 工程力学, 2021, 39: 1. doi: 10.6052/j.issn.1000-4750.2021.06.0466

    HE Dingqiao, YANG Jun. Automatic identification method and experimental verification of structural modal parameters based on HHT [J]. Engineering Mechanics, 2021, 39: 1. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0466
    [3]
    李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8): 1 − 7. doi: 10.6052/j.issn.1000-4750.2014.08.ST11

    LI Hui, BAO Yuequan, LI Shunlong, et al. Structural Health Monitoring Data Science and Engineering [J]. Engineering Mechanics, 2015, 32(8): 1 − 7. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.08.ST11
    [4]
    郭健, 顾正维, 孙炳楠, 等. 基于小波分析的桥梁健康监测方法[J]. 工程力学, 2006, 23(12): 129 − 135. doi: 10.3969/j.issn.1000-4750.2006.12.023

    GUO Jian, GU Zhengwei, SUN Bingnan, et al. Bridge health monitoring method based on wavelet analysis [J]. Engineering Mechanics, 2006, 23(12): 129 − 135. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.12.023
    [5]
    朱宏平, 璟余, 张俊兵. 结构损伤动力检测与健康监测研究现状与展望[J]. 工程力学, 2011, 28(2): 1 − 11. doi: 10.6052/j.issn.1000-4750.2010.06.ST03

    ZHU Hongping, JING Yu, ZHANG Junbing. Research status a nd prospects of structural damage dynamic detection and health monitoring [J]. Engineering Mechanics, 2011, 28(2): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.06.ST03
    [6]
    戴玉婷, 严慧, 王林鹏. 基于非线性气动力的失速颤振计算与试验研究[J]. 工程力学, 2020, 37(8): 230 − 236. doi: 10.6052/j.issn.1000-4750.2019.03.0141

    DAI Yuting, YAN Hui, WANG Linpeng. Calculation and experimental study of stall flutter based on nonlinear aerodynamic force [J]. Engineering Mechanics, 2020, 37(8): 230 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0141
    [7]
    秦国华, 林锋, 叶海潮, 等. 基于残余应力释放的航空结构件加工变形模型与结构优化方法[J]. 工程力学, 2018, 35(9): 214 − 222, 231. doi: 10.6052/j.issn.1000-4750.2017.06.0433

    QIN Guohua, LIN Feng, YE Haichao, et al. -Machining deformation model and structure optimization method of aviation structural parts based on residual stress release [J]. Engineering Mechanics, 2018, 35(9): 214 − 222, 231. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0433
    [8]
    詹阳磊, 肖黎, 屈文忠. 温变工况下的EMI螺栓松动损伤识别[J]. 机械科学与技术, 2019, 38(6): 821 − 827.

    ZHAN Yanglei, XIAO Li, QU Wenzhong. EMI Bolt Loose Damage Identification under Temperature Variation Conditions [J]. Mechanical Science and Technology, 2019, 38(6): 821 − 827. (in Chinese)
    [9]
    杜飞, 张子涵, 徐超. 法兰螺栓松动的超声导波监测方法[J]. 压电与声光, 2019, 41(5): 679 − 684.

    DU Fei, ZHANG Zihan, XU Chao. Ultrasonic Guided Wave Monitoring Method for Flange Bolt Looseness [J]. Piezoelectric and Acousto-Optic, 2019, 41(5): 679 − 684. (in Chinese)
    [10]
    NA W S. Bolt loosening detection using impedance based non-destructive method and probabilistic neural network technique with minimal training data [J]. Engineering Structures, 2021, 226: 111228. doi: 10.1016/j.engstruct.2020.111228
    [11]
    王刚, 肖黎, 屈文忠. Lamb波高斯混合模型螺栓松动损伤检测[J]. 机械科学与技术, 2020, 39(4): 493 − 500.

    WANG Gang, XIAO Li, QU Wenzhong. Lamb wave Gaussian mixture model bolt loosening damage detection [J]. Mechanical Science and Technology, 2020, 39(4): 493 − 500. (in Chinese)
    [12]
    TU Y, HUANG Y, TU S. Real-time monitoring of bolt clamping force at high temperatures using metal-packaged regenerated fiber Bragg grating sensors [J]. International Journal of Pressure Vessels and Piping, 2019, 172: 119 − 126. doi: 10.1016/j.ijpvp.2019.03.006
    [13]
    白鲁帅, 李钢, 靳永强, 等. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53 − 60. doi: 10.6052/j.issn.1000-4750.2017.09.0691

    BAI Lushuai, LI Gang, JIN Yongqiang, et al. A damage-isolated truss structure behavior identification method [J]. Engineering Mechanics, 2019, 36(1): 53 − 60. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.0691
    [14]
    赵林鑫, 江守燕, 杜成斌. 基于SBFEM和机器学习的薄板结构缺陷反演[J]. 工程力学, 2021, 38(6): 36 − 46. doi: 10.6052/j.issn.1000-4750.2020.06.0416

    ZHAO Linxin, JIANG Shouyan, DU Chengbin. Defect invers ion of thin plate structure based on SBFEM and machine learning [J]. Engineering Mechanics, 2021, 38(6): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0416
    [15]
    徐浩, 沙刚刚, 李腾腾, 等. 基于二维连续小波变换与数据融合技术的逆有限元法-伪激励法结构损伤识别方法[J]. 复合材料学报, 2021, 38(10): 3564 − 3572. doi: 10.13801/j.cnki.fhclxb.20210115.001

    XU Hao, SHA Ganggang, LI Tengteng, et al. Inverse finite element method-pseudo-excitation method based on two-dimensional continuous wavelet transform and data fusion technology for structural damage identification [J]. Journal of Composite Materials, 2021, 38(10): 3564 − 3572. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20210115.001
    [16]
    LU Y, TANG J. On time-frequency domain feature extraction of wave signals for structural health monitoring [J]. Measurement:journal of the International Measurement Confederation, 2018, 114: 51 − 59. doi: 10.1016/j.measurement.2017.09.016
    [17]
    周广东, 操声浪, 刘定坤. 基于自适应动态惩罚遗传算法的桥梁监测无线测点优化研究[J]. 建筑科学与工程学报, 2018, 35(5): 86 − 92. doi: 10.3969/j.issn.1673-2049.2018.05.012

    ZHOU Guangdong, CAO Shenglang, LIU Dingkun. Research on wireless measurement point optimization of bridge monitoring based on adaptive dynamic penalty genetic algorithm [J]. Journal of Building Science and Engineering, 2018, 35(5): 86 − 92. (in Chinese) doi: 10.3969/j.issn.1673-2049.2018.05.012
    [18]
    KANARACHOS S, CHRISTOPOULOS S G, CHRONEOS A, et al. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform [J]. Expert Systems with Applications, 2017, 85: 292 − 304. doi: 10.1016/j.eswa.2017.04.028
    [19]
    CHANG C, LIN T, CHANG C. Applications of neural network models for structural health monitoring based on derived modal properties [J]. Measurement, 2018, 129: 457 − 470. doi: 10.1016/j.measurement.2018.07.051
    [20]
    CHEN L, XU G, ZHANG S, et al. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks [J]. Journal of Manufacturing Systems, 2020, 54: 1 − 11. doi: 10.1016/j.jmsy.2019.11.008
    [21]
    DENG W, MOU Y, KASHIWA T, et al. Vision based pixel-level bridge structural damage detection using a link ASPP network [J]. Automation in Construction, 2020, 110: 102973. doi: 10.1016/j.autcon.2019.102973
    [22]
    王慧, 郭晨林, 王乐, 等. 基于内积矩阵及深度学习的结构健康监测研究[J]. 工程力学, 2021, 39(2): 14 − 22, 75. doi: 10.6052/j.issn.1000-4750.2020.12.0935

    WANG Hui, GUO Chenlin, WANG Le, et al. Structural health monitoring based on inner product matrix and deep learning [J]. Engineering Mechanics, 2021, 39(2): 14 − 22, 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0935
    [23]
    CHENG T, LI N, CONSELICE C J, et al. Identifying strong lenses with unsupervised machine learning using convolutional autoencoder [J]. Monthly Notices of the Royal Astronomical Society, 2020, 494: 3750 − 3765. doi: 10.1093/mnras/staa1015
    [24]
    ADEM K, KILIÇARSLAN S, CÖMERT O. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification [J]. Expert Systems with Applications, 2019, 115: 557 − 564. doi: 10.1016/j.eswa.2018.08.050
    [25]
    卓德兵, 曹晖. 基于小波时频图与轻量级卷积神经网络的螺栓连接损伤识别[J]. 工程力学, 2021, 38(9): 228 − 238. doi: 10.6052/j.issn.1000-4750.2021.02.0116

    ZHUO Debing, CAO Hui. Bolt connection damage identification based on wavelet time-frequency diagram and light weight convolutional neural network [J]. Engineering Mechanics, 2021, 38(9): 228 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0116
    [26]
    ZENG S, GOU J, DENG L. An antinoise sparse representation method for robust face recognition via joint l1 and l2 regularization [J]. Expert Systems with Applications, 2017, 82: 1 − 9. doi: 10.1016/j.eswa.2017.04.001
    [27]
    JAIS I K M, ISMAIL A R, NISA S Q. Adam Optimization Algorithm for Wide and Deep Neural Network [J]. Knowl. Eng. Data Sci., 2019, 2: 41 − 46. doi: 10.17977/um018v2i12019p41-46
    [28]
    王乐. 结构边界条件参数识别及损伤检测方法研究[D]. 西安: 西北工业大学, 2010.

    WANG Le. Research on the method of structural boundary condition parameter identification and damage detection [D]. Xi'an: Northwestern Polytechnical University, 2010. (in Chinese)

Catalog

    Article Metrics

    Article views (464) PDF downloads (96) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return