WANG Yong-liang, WANG Jian-hui, ZHANG Lei. ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS[J]. Engineering Mechanics, 2021, 38(10): 24-33. DOI: 10.6052/j.issn.1000-4750.2020.10.0708
Citation: WANG Yong-liang, WANG Jian-hui, ZHANG Lei. ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS[J]. Engineering Mechanics, 2021, 38(10): 24-33. DOI: 10.6052/j.issn.1000-4750.2020.10.0708

ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS

More Information
  • Received Date: October 03, 2020
  • Revised Date: December 16, 2020
  • Available Online: December 28, 2020
  • The scheme for the cross-section damage defects in a circularly curved beam is established to simulate the depth, the location and the number of multiple cracks, through implementing cross-section reduction induced by microcrack damage. The h-version adaptive finite element method of a variable cross-section Timoshenko beam is introduced to solve the free vibration of a circularly curved beam with cracks damage. Using the proposed method, the final optimized meshes and high-precision solution of natural frequency and mode shape satisfying the preset error tolerance can be obtained, and the disturbance behavior of multi crack damage on the vibration mode of a circularly curved beam is studied. Numerical examples show that the non-uniform mesh refinement can adapt to the change of mode of vibration induced by crack damage, which is applied to the free vibration research of various circularly curved beams with included angles and crack damage distribution conditions. Furthermore, the influences of crack damage depth, crack damage number, and crack damage distribution on the natural frequency and mode of vibration of a circularly curved beam are quantitatively analyzed, and the accuracy and practicability of the proposed algorithm are verified.
  • [1]
    Wu J S. Analytical methods and finite element method for free vibration analyses of circularly curved beams [M]. Hoboken, US: John Wiley and Sons (Singapore), Pte Ltd, 2015.
    [2]
    Oviedo-Tolentino F, Pérez-Gutiérrez F, Romero-Méndez R, et al. Vortex-induced vibration of a bottom fixed flexible circular beam [J]. Ocean Engineering, 2014, 88: 463 − 471. doi: 10.1016/j.oceaneng.2014.07.012
    [3]
    Fam A, Rizkalla S. Large scale testing and analysis of hybrid concrete/composite tubes for circular beam-column applications [J]. Construction and Building Materials, 2003, 17(6/7): 507 − 516.
    [4]
    Yang J, Chen Y. Free vibration and buckling analyses of functionally graded beams with edge cracks [J]. Composite Structures, 2008, 83(1): 48 − 60. doi: 10.1016/j.compstruct.2007.03.006
    [5]
    Piovan M T, Domini S, Ramirez J M. In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams [J]. Composite Structures, 2012, 94(11): 3194 − 3206. doi: 10.1016/j.compstruct.2012.04.032
    [6]
    Cerri M N, Dilena M, Ruta G C. Vibration and damage detection in undamaged and cracked circular arches: Experimental and analytical results [J]. Journal of Sound and Vibration, 2008, 314(1/2): 83 − 94.
    [7]
    Lee J W. Crack identification method for tapered cantilever pipe-type beam using natural frequencies [J]. International Journal of Steel Structures, 2016, 16(2): 467 − 476. doi: 10.1007/s13296-016-6017-x
    [8]
    Rizos P F, Aspragathos N, Dimarogonas A D. Identification of crack location and magnitude in a cantilever beam from the vibration modes [J]. Journal of Sound and Vibration, 1990, 138(3): 381 − 388. doi: 10.1016/0022-460X(90)90593-O
    [9]
    Fan W, Qiao P. Vibration-based damage identification methods: A review and comparative study [J]. Structural Health Monitoring, 2011, 10(1): 83 − 111. doi: 10.1177/1475921710365419
    [10]
    Yang Y, Yang J. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles [J]. International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850025. doi: 10.1142/S0219455418500256
    [11]
    Duan Y, Wang J, Wang J, et al. Theoretical and experimental study on the transverse vibration properties of an axially moving nested cantilever beam [J]. Journal of Sound and Vibration, 2014, 333(13): 2885 − 2897. doi: 10.1016/j.jsv.2014.02.021
    [12]
    Jaworski J W, Dowell E H. Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment [J]. Journal of Sound and Vibration, 2008, 312(4/5): 713 − 725.
    [13]
    Palash D, Talukdar S. Modal characteristics of cracked thin walled unsymmetrical cross-sectional steel beams curved in plan [J]. Thin Walled Structures, 2016, 108: 75 − 92. doi: 10.1016/j.tws.2016.08.006
    [14]
    Karaagac C, Ozturk H, Sabuncu M. Crack effects on the in-plane static and dynamic stabilities of a curved beam with an edge crack [J]. Journal of Sound and Vibration, 2011, 330(8): 1718 − 1736. doi: 10.1016/j.jsv.2010.10.033
    [15]
    Bovsunovskii O A. A finite-element model for the study of vibration of a beam with a closing crack [J]. Strength of Materials, 2008, 40(5): 584 − 589. doi: 10.1007/s11223-008-9072-5
    [16]
    Melenk J M, Wohlmuth B I. On residual-based a posteriori error estimation in hp-FEM [J]. Advances in Computational Mathematics, 2001, 15(1/2/3/4): 311 − 331.
    [17]
    Yuan S, Wang Y, Ye K. An adaptive FEM for buckling analysis of non-uniform Bernoulli-Euler members via the element energy projection technique [J]. Mathematical Problems in Engineering, 2013, 40(7): 221 − 239.
    [18]
    Wang Y. An h-version adaptive FEM for eigenproblems in system of second order ODEs: Vector Sturm-Liouville problems and free vibration of curved beams [J]. Engineering Computations, 2020, 37(1): 1210 − 1225.
    [19]
    王永亮. 变截面变曲率梁振型的有限元超收敛拼片恢复解和网格自适应分析[J]. 工程力学, 2020, 37(12): 1 − 8. doi: 10.6052/j.issn.1000-4750.2020.02.0065

    Wang Yongliang. Superconvergent patch recovery solutions and adaptive mesh refinement analysis of finite element method for the vibration modes of non-uniform and variable curvature beams [J]. Engineering Mechanics, 2020, 37(12): 1 − 8. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0065
    [20]
    袁驷, 王永亮, 徐俊杰. 二维自由振动的有限元线法自适应分析新进展[J]. 工程力学, 2014, 31(1): 15 − 22. doi: 10.6052/j.issn.1000-4750.2013.05.ST01

    Yuan Si, Wang Yongliang, Xu Junjie. New progress in self-adaptive FEMOL analysis of 2D free vibration problems [J]. Engineering Mechanics, 2014, 31(1): 15 − 22. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.ST01
    [21]
    Wang Y, Ju Y, Zhuang Z, et al. Adaptive finite element analysis for damage detection of non–uniform Euler–Bernoulli beams with multiple cracks based on natural frequencies [J]. Engineering Computations, 2017, 35(3): 1203 − 1229.
    [22]
    王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021, 38(2): 8 − 15. doi: 10.6052/j.issn.1000-4750.2020.03.0173

    Wang Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of circularly cracked curved beams [J]. Engineering Mechanics, 2021, 38(2): 8 − 15. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0173
    [23]
    王永亮, 鞠杨, 陈佳亮, 等. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17 − 25, 36. doi: 10.6052/j.issn.1000-4750.2017.06.0421

    Wang Yongliang, Ju Yang, Chen Jialiang, et al. Adaptive finite element-discrete element algorithm, software ELFEN and application in stimulated reservoir volume of shale [J]. Engineering Mechanics, 2018, 35(9): 17 − 25, 36. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0421
    [24]
    Friedman Z, Kosmatka J B. An accurate two-node finite element for shear deformable curved beams [J]. International Journal for Numerical Methods in Engineering, 1998, 41: 473 − 498. doi: 10.1002/(SICI)1097-0207(19980215)41:3<473::AID-NME294>3.0.CO;2-Q
    [25]
    Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: its basis and fundamentals [M]. 7th ed. Oxford, UK: Elsevier (Singapore), Pte Ltd, 2015.
    [26]
    Wiberg N E, Bausys R, Hager P. Adaptive h-version eigenfrequency analysis [J]. Computers and Structures, 1999, 71(5): 565 − 584. doi: 10.1016/S0045-7949(98)00235-1
    [27]
    Wiberg N E, Bausys R, Hager P. Improved eigenfrequencies and eigenmodes in free vibration analysis [J]. Computers and Structures, 1999, 73(1/2/3/4/5): 79 − 89.
    [28]
    Clough R W, Penzien J. Dynamics of structures [M]. 2nd ed. New York: McGraw-Hill, 1993.
    [29]
    袁驷, 叶康生, 王珂. 平面曲梁面内自由振动分析的自适应有限元法[J]. 工程力学, 2009, 26(增刊 2): 126 − 132.

    Yuan Si, Ye Kangsheng, Wang Ke. A self-adaptive fem for free vibration analysis of planar curved beams with variable cross-sections [J]. Engineering Mechanics, 2009, 26(Suppl 2): 126 − 132. (in Chinese)

Catalog

    Article Metrics

    Article views (835) PDF downloads (113) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return