Citation: | WANG Yong-liang, WANG Jian-hui, ZHANG Lei. ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS[J]. Engineering Mechanics, 2021, 38(10): 24-33. DOI: 10.6052/j.issn.1000-4750.2020.10.0708 |
[1] |
Wu J S. Analytical methods and finite element method for free vibration analyses of circularly curved beams [M]. Hoboken, US: John Wiley and Sons (Singapore), Pte Ltd, 2015.
|
[2] |
Oviedo-Tolentino F, Pérez-Gutiérrez F, Romero-Méndez R, et al. Vortex-induced vibration of a bottom fixed flexible circular beam [J]. Ocean Engineering, 2014, 88: 463 − 471. doi: 10.1016/j.oceaneng.2014.07.012
|
[3] |
Fam A, Rizkalla S. Large scale testing and analysis of hybrid concrete/composite tubes for circular beam-column applications [J]. Construction and Building Materials, 2003, 17(6/7): 507 − 516.
|
[4] |
Yang J, Chen Y. Free vibration and buckling analyses of functionally graded beams with edge cracks [J]. Composite Structures, 2008, 83(1): 48 − 60. doi: 10.1016/j.compstruct.2007.03.006
|
[5] |
Piovan M T, Domini S, Ramirez J M. In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams [J]. Composite Structures, 2012, 94(11): 3194 − 3206. doi: 10.1016/j.compstruct.2012.04.032
|
[6] |
Cerri M N, Dilena M, Ruta G C. Vibration and damage detection in undamaged and cracked circular arches: Experimental and analytical results [J]. Journal of Sound and Vibration, 2008, 314(1/2): 83 − 94.
|
[7] |
Lee J W. Crack identification method for tapered cantilever pipe-type beam using natural frequencies [J]. International Journal of Steel Structures, 2016, 16(2): 467 − 476. doi: 10.1007/s13296-016-6017-x
|
[8] |
Rizos P F, Aspragathos N, Dimarogonas A D. Identification of crack location and magnitude in a cantilever beam from the vibration modes [J]. Journal of Sound and Vibration, 1990, 138(3): 381 − 388. doi: 10.1016/0022-460X(90)90593-O
|
[9] |
Fan W, Qiao P. Vibration-based damage identification methods: A review and comparative study [J]. Structural Health Monitoring, 2011, 10(1): 83 − 111. doi: 10.1177/1475921710365419
|
[10] |
Yang Y, Yang J. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles [J]. International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850025. doi: 10.1142/S0219455418500256
|
[11] |
Duan Y, Wang J, Wang J, et al. Theoretical and experimental study on the transverse vibration properties of an axially moving nested cantilever beam [J]. Journal of Sound and Vibration, 2014, 333(13): 2885 − 2897. doi: 10.1016/j.jsv.2014.02.021
|
[12] |
Jaworski J W, Dowell E H. Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment [J]. Journal of Sound and Vibration, 2008, 312(4/5): 713 − 725.
|
[13] |
Palash D, Talukdar S. Modal characteristics of cracked thin walled unsymmetrical cross-sectional steel beams curved in plan [J]. Thin Walled Structures, 2016, 108: 75 − 92. doi: 10.1016/j.tws.2016.08.006
|
[14] |
Karaagac C, Ozturk H, Sabuncu M. Crack effects on the in-plane static and dynamic stabilities of a curved beam with an edge crack [J]. Journal of Sound and Vibration, 2011, 330(8): 1718 − 1736. doi: 10.1016/j.jsv.2010.10.033
|
[15] |
Bovsunovskii O A. A finite-element model for the study of vibration of a beam with a closing crack [J]. Strength of Materials, 2008, 40(5): 584 − 589. doi: 10.1007/s11223-008-9072-5
|
[16] |
Melenk J M, Wohlmuth B I. On residual-based a posteriori error estimation in hp-FEM [J]. Advances in Computational Mathematics, 2001, 15(1/2/3/4): 311 − 331.
|
[17] |
Yuan S, Wang Y, Ye K. An adaptive FEM for buckling analysis of non-uniform Bernoulli-Euler members via the element energy projection technique [J]. Mathematical Problems in Engineering, 2013, 40(7): 221 − 239.
|
[18] |
Wang Y. An h-version adaptive FEM for eigenproblems in system of second order ODEs: Vector Sturm-Liouville problems and free vibration of curved beams [J]. Engineering Computations, 2020, 37(1): 1210 − 1225.
|
[19] |
王永亮. 变截面变曲率梁振型的有限元超收敛拼片恢复解和网格自适应分析[J]. 工程力学, 2020, 37(12): 1 − 8. doi: 10.6052/j.issn.1000-4750.2020.02.0065
Wang Yongliang. Superconvergent patch recovery solutions and adaptive mesh refinement analysis of finite element method for the vibration modes of non-uniform and variable curvature beams [J]. Engineering Mechanics, 2020, 37(12): 1 − 8. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0065
|
[20] |
袁驷, 王永亮, 徐俊杰. 二维自由振动的有限元线法自适应分析新进展[J]. 工程力学, 2014, 31(1): 15 − 22. doi: 10.6052/j.issn.1000-4750.2013.05.ST01
Yuan Si, Wang Yongliang, Xu Junjie. New progress in self-adaptive FEMOL analysis of 2D free vibration problems [J]. Engineering Mechanics, 2014, 31(1): 15 − 22. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.ST01
|
[21] |
Wang Y, Ju Y, Zhuang Z, et al. Adaptive finite element analysis for damage detection of non–uniform Euler–Bernoulli beams with multiple cracks based on natural frequencies [J]. Engineering Computations, 2017, 35(3): 1203 − 1229.
|
[22] |
王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021, 38(2): 8 − 15. doi: 10.6052/j.issn.1000-4750.2020.03.0173
Wang Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of circularly cracked curved beams [J]. Engineering Mechanics, 2021, 38(2): 8 − 15. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0173
|
[23] |
王永亮, 鞠杨, 陈佳亮, 等. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17 − 25, 36. doi: 10.6052/j.issn.1000-4750.2017.06.0421
Wang Yongliang, Ju Yang, Chen Jialiang, et al. Adaptive finite element-discrete element algorithm, software ELFEN and application in stimulated reservoir volume of shale [J]. Engineering Mechanics, 2018, 35(9): 17 − 25, 36. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0421
|
[24] |
Friedman Z, Kosmatka J B. An accurate two-node finite element for shear deformable curved beams [J]. International Journal for Numerical Methods in Engineering, 1998, 41: 473 − 498. doi: 10.1002/(SICI)1097-0207(19980215)41:3<473::AID-NME294>3.0.CO;2-Q
|
[25] |
Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: its basis and fundamentals [M]. 7th ed. Oxford, UK: Elsevier (Singapore), Pte Ltd, 2015.
|
[26] |
Wiberg N E, Bausys R, Hager P. Adaptive h-version eigenfrequency analysis [J]. Computers and Structures, 1999, 71(5): 565 − 584. doi: 10.1016/S0045-7949(98)00235-1
|
[27] |
Wiberg N E, Bausys R, Hager P. Improved eigenfrequencies and eigenmodes in free vibration analysis [J]. Computers and Structures, 1999, 73(1/2/3/4/5): 79 − 89.
|
[28] |
Clough R W, Penzien J. Dynamics of structures [M]. 2nd ed. New York: McGraw-Hill, 1993.
|
[29] |
袁驷, 叶康生, 王珂. 平面曲梁面内自由振动分析的自适应有限元法[J]. 工程力学, 2009, 26(增刊 2): 126 − 132.
Yuan Si, Ye Kangsheng, Wang Ke. A self-adaptive fem for free vibration analysis of planar curved beams with variable cross-sections [J]. Engineering Mechanics, 2009, 26(Suppl 2): 126 − 132. (in Chinese)
|