Citation: | HUANG Xue-wei, GE Jian-zhou, ZHAO Jun, ZHAO Wei, ZHAO Ao-bo. FRACTURE PREDICTION ANALYSIS OF Q690D HIGH STRENGTH STEEL BASED ON CONTINUUM DAMAGE MODEL[J]. Engineering Mechanics, 2020, 37(2): 230-240. DOI: 10.6052/j.issn.1000-4750.2019.01.0088 |
[1] |
Ban H Y, Shi G, Shi Y J, et al. Research progress on the mechanical property of high strength structural steels[J]. Advanced Materials Research, 2011, 250/251/252/253:640-648.
|
[2] |
李国强, 王彦博, 陈素文, 等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1):1-13. Li Guoqiang, Wang Yanbo, Chen Suwen, et al. State-of-the-art on research of high strength structural steels and key issues of using high strength steels in seismic structures[J]. Journal of Building Structures, 2013, 34(1):1-13. (in Chinese)
|
[3] |
廖芳芳, 王伟, 陈以一. 往复荷载下钢结构节点的超低周疲劳断裂预测[J]. 同济大学学报(自然科学版), 2014, 42(4):539-546. Liao Fangfang, Wang Wei, Chen Yiyi. Extremely low cycle fatigue fracture prediction of steel connections under cyclic loading[J]. Journal of Tongji Uinversity (Natural Science), 2014, 42(4):539-546. (in Chinese)
|
[4] |
Huang X W, Zhao J. A cumulative damage model for extremely low cycle fatigue cracking in steel structure[J]. Structural Engineering and Mechanics, 2017, 62(2):225-236.
|
[5] |
王磊, 班慧勇, 石永久, 等. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11):68-78 Wang Lei, Ban Huiyong, Shi Yongjiu, et al. Finite element analysis on aseismic behavior of high-strength steel beam-to-column connections in steel frame based on micromechanics of fracture[J]. Engineering Mechanics, 2018, 35(11):68-78. (in Chinese)
|
[6] |
Kanvinde A M, Deierlein G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133(6):701-712.
|
[7] |
Tong L W, Huang X W, Zhou F, et al. Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints[J]. Journal of Constructional Steel Research, 2016, 119:98-112.
|
[8] |
黄学伟, 张旭, 苗同臣. 建筑结构钢超低周疲劳断裂破坏的损伤预测模型[J]. 工程力学, 2017, 34(6):101-108. Huang Xuewei, Zhang Xu, Miao Tongchen. A damage prediction model for ultra low cycle fatigue failure of building structure steel[J]. Journal of Building Structures, 2017, 34(6):101-108. (in Chinese)
|
[9] |
Kanvinde A M, Deierlein G G. Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12):1907-1918.
|
[10] |
Liao F F, Wang R Z, Tu L S, et al. Micromechanical fracture model parameter influencing factor study of structural steels and welding materials[J]. Construction and Building Materials, 2019, 215(10):898-917.
|
[11] |
刘希月, 王元清, 石永久. 基于微观机理的高强度钢材及其焊缝断裂预测模型研究[J]. 建筑结构学报, 2016, 37(6):228-235. Liu Xiyue, Wang Yuanqing, Shi Yongjiu. Micromechanical fracture prediction model of high strength steel and its weld[J]. Journal of Building Structures, 2016, 37(6):228-235. (in Chinese)
|
[12] |
陈博林. 基于微观损伤模型的Q460C钢材断裂行为研究[D]. 北京:北京交通大学, 2017. Chen Bolin. Fracture research of Q460C steel based on micromechanical damage models[D]. Beijing:Beijing Jiaotong University, 2017. (in Chinese)
|
[13] |
刘希月. 基于微观机理的高强钢结构材料与节点的断裂性能研究[D]. 北京:清华大学, 2015. Liu Xiyue. Investigations on fracture behaviours of high strength steel materials and connections based on micromechanical models[D]. Beijing:Tsinghua University, 2015. (in Chinese)
|
[14] |
施刚, 陈玉峰. 基于微观机理的Q460钢材角焊缝搭接接头延性断裂研究[J]. 工程力学, 2017, 34(4):13-21. Shi Gang, Chen Yufeng. Investigation on the ductile fracture behaviro of Q460 steel fillet welded joints based on micro-Mechanics[J]. Engineering Mechanics, 2017, 34(4):13-21. (in Chinese)
|
[15] |
Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1):83-89.
|
[16] |
Bonora N. A nonlinear CDM model for ductile failure[J]. Engineering Fracture Mechanics, 1997, 58(1):11-28.
|
[17] |
Bao Y, Wierzbicki T. On the cut-off value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72(7):1049-1069.
|
[18] |
Chaboche J L. Anisotropic creep damage in the framework of continuum damage mechanics[J]. Nuclear Engineering and Design, 1984, 79(3):309-319.
|
[19] |
ABAQUS. Analysis user's manual I_V. Version 6.14[M]. USA:ABAQUS, Inc., Dassault Systèmes, 2014.
|
[20] |
刘希月, 王元清, 石永久, 等. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5):54-64. Liu Xiyue, Wang Yuanqing, Shi Yongjiu, et al. Experimental study on the weld fracture behavior of high strength steel beam-to-column connections[J]. Journal of Building Structures, 2018, 35(5):54-64. (in Chinese)
|
[1] | SUN Zhong-zhen, SHEN Fei, ZHANG Yuan, SU Jie, LIU Yun-zhi, LIU Cai-kui, KE Liao-liang. FINITE ELEMENT ANALYSIS OF SINTERING AND SOLDERING PROCESS IN MULTILAYER CERAMIC CAPACITORS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.10.0760 |
[2] | YANG Zhi-jian, LEI Yue-qiang. FINITE ELEMENT ANALYSIS OF THE SHEAR BEHAVIOR OF PRESTRESSED HIGH-STRENGTH CONCRENTE PILES[J]. Engineering Mechanics, 2020, 37(S): 200-207. DOI: 10.6052/j.issn.1000-4750.2019.04.S036 |
[3] | YANG Hao, LUO Shuai, XING Guo-ran, WANG Wei. FINITE ELEMENT ANALYSIS OF BAR AND BEAM COMPOSITE STRUCTURES[J]. Engineering Mechanics, 2019, 36(S1): 154-157,169. DOI: 10.6052/j.issn.1000-4750.2018.05.S029 |
[4] | HUANG Xue-wei, ZHANG Xu, MIAO Tong-chen. A DAMAGE PREDICTION MODEL FOR ULTRA LOW CYCLE FATIGUE FAILURE OF BUILDING STRUCTURAL STEEL[J]. Engineering Mechanics, 2017, 34(6): 101-108. DOI: 10.6052/j.issn.1000-4750.2015.12.0991 |
[5] | HE Tao, LI Zi-ran, WANG Yang. FINITE ELEMENT ANALYSIS FOR SLIDING ABRASION OF TREAD BLOCKS OF RADIAL TIRE[J]. Engineering Mechanics, 2010, 27(7): 237-243,. |
[6] | ZHAO Jie, NIE Jian-guo. NONLINEAR FINITE ELEMENT ANALYSIS OF STEEL PLATE-CONCRETE COMPOSITE BEAMS[J]. Engineering Mechanics, 2009, 26(4): 105-112. |
[7] | SHI Gang, SHI Yong-jiu, WANG Yuan-qing. NONLINEAR FINITE ELEMENT ANALYSIS OF END-PLATE CONNECTIONS IN STEEL FRAMES[J]. Engineering Mechanics, 2008, 25(12): 79-085. |
[8] | WANG Jing-feng, LI Guo-qiang. FINITE ELEMENT ANALYSIS OF SEMI-RIGID COMPOSITE FRAMES UNDER VERTICAL LOADS[J]. Engineering Mechanics, 2007, 24(12): 59-064. |
[9] | XIE Xue-bin, XIAO Ying-xiong, PAN Chang-liang, SHU Shi. APPLICATION OF ALGEBRAIC MULTIGRID METHOD IN FINITE ELEMENT ANALYSIS OF ROCK MECHANICS[J]. Engineering Mechanics, 2005, 22(5): 165-170. |
[10] | Wang Xinmin. THE FINITE ELEMENT ANALYSIS FOR LARGE DEFLECTION OF SPACE TRUSSES[J]. Engineering Mechanics, 1997, 14(4): 98-103. |
1. |
尹越,韩磊旺,徐丽森,李福康. 基于孔洞扩张模型的偏心受力焊接球节点延性断裂数值模拟. 工程力学. 2025(02): 190-198 .
![]() | |
2. |
郭勇,杨明川,秦瑞冰,杨红,李乾坤. 风力发电机主轴表面裂纹应力强度因子计算. 机械工程师. 2025(02): 104-107+112 .
![]() | |
3. |
陈桥,姜健,蔡文玉,陈伟,叶继红. 基于SMCS模型的高强螺栓及节点火灾全过程断裂性能模拟. 工程力学. 2024(02): 56-70+159 .
![]() | |
4. |
李祥,马娟娟,余丰. 一种新的耦合型塑性损伤本构模型预测高强钢损伤断裂. 力学季刊. 2024(03): 717-729 .
![]() | |
5. |
刘永健,赵瑞,姜磊,傅一晟. 矩形钢管K型节点复合型应力强度因子计算方法研究. 工程力学. 2023(05): 182-194 .
![]() | |
6. |
郭宏超,蔡欣悦,李国强,王彦博,刘云贺. 湿热周浸环境下高强钢对接焊缝的疲劳性能. 建筑材料学报. 2022(08): 823-829 .
![]() | |
7. |
李文超,景媛. 一种改进的Xue-Wierzbicki延性断裂模型. 塑性工程学报. 2022(11): 127-137 .
![]() | |
8. |
郭宏超,魏欢欢,杨迪雄,刘云贺,王振山,田建勃. 海洋腐蚀环境下Q690高强钢材疲劳性能试验研究. 土木工程学报. 2021(05): 36-45 .
![]() | |
9. |
张毅,薛世峰,韩丽美,周博,刘建林,贾朋. 半结晶聚合物损伤演化的实验表征与数值模拟. 力学学报. 2021(06): 1671-1683 .
![]() | |
10. |
葛建舟,黄学伟,赵军,赵威,魏晨晨. Q690D高强钢基于循环微孔扩展模型的断裂预测分析. 钢结构(中英文). 2021(07): 18-28 .
![]() | |
11. |
黄学伟,张潇舸,魏晨晨,赵军,葛建舟. Q690D钢材十字形焊接接头高温后的断裂破坏试验研究. 建筑科学与工程学报. 2021(05): 56-65 .
![]() | |
12. |
童乐为,牛立超,任珍珍,ZHAO Xiao-ling. Q550D高强钢焊接节点疲劳强度试验研究. 工程力学. 2021(12): 214-222+248 .
![]() | |
13. |
韩丽美,张毅,叶贵根,薛世峰,贾朋. 应力三轴度对聚乙烯材料损伤及断裂的影响. 中南大学学报(自然科学版). 2021(11): 3843-3854 .
![]() | |
14. |
汪凤,高晓飞,卢鹏超,范玉然,隋永莉. 管件防脆断控制技术现状与思考. 油气储运. 2020(08): 871-878 .
![]() |