HUANG Xue-wei, GE Jian-zhou, ZHAO Jun, ZHAO Wei, ZHAO Ao-bo. FRACTURE PREDICTION ANALYSIS OF Q690D HIGH STRENGTH STEEL BASED ON CONTINUUM DAMAGE MODEL[J]. Engineering Mechanics, 2020, 37(2): 230-240. DOI: 10.6052/j.issn.1000-4750.2019.01.0088
Citation: HUANG Xue-wei, GE Jian-zhou, ZHAO Jun, ZHAO Wei, ZHAO Ao-bo. FRACTURE PREDICTION ANALYSIS OF Q690D HIGH STRENGTH STEEL BASED ON CONTINUUM DAMAGE MODEL[J]. Engineering Mechanics, 2020, 37(2): 230-240. DOI: 10.6052/j.issn.1000-4750.2019.01.0088

FRACTURE PREDICTION ANALYSIS OF Q690D HIGH STRENGTH STEEL BASED ON CONTINUUM DAMAGE MODEL

More Information
  • Received Date: March 06, 2019
  • Revised Date: July 07, 2019
  • High strength steel has been gradually applied in the steel structure constructions in recent years. Q690D high strength steel specimens were tested under monotonic loading and extremely low cyclic loading in the paper. The crack initiation locations of specimens were investigated and the effect of loading history on strength and deformation of notched specimens was analyzed. Scanning electron microscope revealed that the fracture morphology of specimens was a dimple pattern with the features of ductile fracture. Based on monotonic tensile test results of notched specimens and finite element analyses, the continuum damage model parameters of Q690D steel were calibrated. Finally, the continuum damage model was applied to predict fracture failure of notched coupon specimens and the specimens with initial gap under different loading conditions. It shows that the cracking location, load-displacement curves, fracture displacement and fatigue life obtained from the numerical simulation are in good agreement with the experimental results.
  • [1]
    Ban H Y, Shi G, Shi Y J, et al. Research progress on the mechanical property of high strength structural steels[J]. Advanced Materials Research, 2011, 250/251/252/253:640-648.
    [2]
    李国强, 王彦博, 陈素文, 等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1):1-13. Li Guoqiang, Wang Yanbo, Chen Suwen, et al. State-of-the-art on research of high strength structural steels and key issues of using high strength steels in seismic structures[J]. Journal of Building Structures, 2013, 34(1):1-13. (in Chinese)
    [3]
    廖芳芳, 王伟, 陈以一. 往复荷载下钢结构节点的超低周疲劳断裂预测[J]. 同济大学学报(自然科学版), 2014, 42(4):539-546. Liao Fangfang, Wang Wei, Chen Yiyi. Extremely low cycle fatigue fracture prediction of steel connections under cyclic loading[J]. Journal of Tongji Uinversity (Natural Science), 2014, 42(4):539-546. (in Chinese)
    [4]
    Huang X W, Zhao J. A cumulative damage model for extremely low cycle fatigue cracking in steel structure[J]. Structural Engineering and Mechanics, 2017, 62(2):225-236.
    [5]
    王磊, 班慧勇, 石永久, 等. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11):68-78 Wang Lei, Ban Huiyong, Shi Yongjiu, et al. Finite element analysis on aseismic behavior of high-strength steel beam-to-column connections in steel frame based on micromechanics of fracture[J]. Engineering Mechanics, 2018, 35(11):68-78. (in Chinese)
    [6]
    Kanvinde A M, Deierlein G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133(6):701-712.
    [7]
    Tong L W, Huang X W, Zhou F, et al. Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints[J]. Journal of Constructional Steel Research, 2016, 119:98-112.
    [8]
    黄学伟, 张旭, 苗同臣. 建筑结构钢超低周疲劳断裂破坏的损伤预测模型[J]. 工程力学, 2017, 34(6):101-108. Huang Xuewei, Zhang Xu, Miao Tongchen. A damage prediction model for ultra low cycle fatigue failure of building structure steel[J]. Journal of Building Structures, 2017, 34(6):101-108. (in Chinese)
    [9]
    Kanvinde A M, Deierlein G G. Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12):1907-1918.
    [10]
    Liao F F, Wang R Z, Tu L S, et al. Micromechanical fracture model parameter influencing factor study of structural steels and welding materials[J]. Construction and Building Materials, 2019, 215(10):898-917.
    [11]
    刘希月, 王元清, 石永久. 基于微观机理的高强度钢材及其焊缝断裂预测模型研究[J]. 建筑结构学报, 2016, 37(6):228-235. Liu Xiyue, Wang Yuanqing, Shi Yongjiu. Micromechanical fracture prediction model of high strength steel and its weld[J]. Journal of Building Structures, 2016, 37(6):228-235. (in Chinese)
    [12]
    陈博林. 基于微观损伤模型的Q460C钢材断裂行为研究[D]. 北京:北京交通大学, 2017. Chen Bolin. Fracture research of Q460C steel based on micromechanical damage models[D]. Beijing:Beijing Jiaotong University, 2017. (in Chinese)
    [13]
    刘希月. 基于微观机理的高强钢结构材料与节点的断裂性能研究[D]. 北京:清华大学, 2015. Liu Xiyue. Investigations on fracture behaviours of high strength steel materials and connections based on micromechanical models[D]. Beijing:Tsinghua University, 2015. (in Chinese)
    [14]
    施刚, 陈玉峰. 基于微观机理的Q460钢材角焊缝搭接接头延性断裂研究[J]. 工程力学, 2017, 34(4):13-21. Shi Gang, Chen Yufeng. Investigation on the ductile fracture behaviro of Q460 steel fillet welded joints based on micro-Mechanics[J]. Engineering Mechanics, 2017, 34(4):13-21. (in Chinese)
    [15]
    Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1):83-89.
    [16]
    Bonora N. A nonlinear CDM model for ductile failure[J]. Engineering Fracture Mechanics, 1997, 58(1):11-28.
    [17]
    Bao Y, Wierzbicki T. On the cut-off value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72(7):1049-1069.
    [18]
    Chaboche J L. Anisotropic creep damage in the framework of continuum damage mechanics[J]. Nuclear Engineering and Design, 1984, 79(3):309-319.
    [19]
    ABAQUS. Analysis user's manual I_V. Version 6.14[M]. USA:ABAQUS, Inc., Dassault Systèmes, 2014.
    [20]
    刘希月, 王元清, 石永久, 等. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5):54-64. Liu Xiyue, Wang Yuanqing, Shi Yongjiu, et al. Experimental study on the weld fracture behavior of high strength steel beam-to-column connections[J]. Journal of Building Structures, 2018, 35(5):54-64. (in Chinese)
  • Related Articles

    [1]SUN Zhong-zhen, SHEN Fei, ZHANG Yuan, SU Jie, LIU Yun-zhi, LIU Cai-kui, KE Liao-liang. FINITE ELEMENT ANALYSIS OF SINTERING AND SOLDERING PROCESS IN MULTILAYER CERAMIC CAPACITORS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.10.0760
    [2]YANG Zhi-jian, LEI Yue-qiang. FINITE ELEMENT ANALYSIS OF THE SHEAR BEHAVIOR OF PRESTRESSED HIGH-STRENGTH CONCRENTE PILES[J]. Engineering Mechanics, 2020, 37(S): 200-207. DOI: 10.6052/j.issn.1000-4750.2019.04.S036
    [3]YANG Hao, LUO Shuai, XING Guo-ran, WANG Wei. FINITE ELEMENT ANALYSIS OF BAR AND BEAM COMPOSITE STRUCTURES[J]. Engineering Mechanics, 2019, 36(S1): 154-157,169. DOI: 10.6052/j.issn.1000-4750.2018.05.S029
    [4]HUANG Xue-wei, ZHANG Xu, MIAO Tong-chen. A DAMAGE PREDICTION MODEL FOR ULTRA LOW CYCLE FATIGUE FAILURE OF BUILDING STRUCTURAL STEEL[J]. Engineering Mechanics, 2017, 34(6): 101-108. DOI: 10.6052/j.issn.1000-4750.2015.12.0991
    [5]HE Tao, LI Zi-ran, WANG Yang. FINITE ELEMENT ANALYSIS FOR SLIDING ABRASION OF TREAD BLOCKS OF RADIAL TIRE[J]. Engineering Mechanics, 2010, 27(7): 237-243,.
    [6]ZHAO Jie, NIE Jian-guo. NONLINEAR FINITE ELEMENT ANALYSIS OF STEEL PLATE-CONCRETE COMPOSITE BEAMS[J]. Engineering Mechanics, 2009, 26(4): 105-112.
    [7]SHI Gang, SHI Yong-jiu, WANG Yuan-qing. NONLINEAR FINITE ELEMENT ANALYSIS OF END-PLATE CONNECTIONS IN STEEL FRAMES[J]. Engineering Mechanics, 2008, 25(12): 79-085.
    [8]WANG Jing-feng, LI Guo-qiang. FINITE ELEMENT ANALYSIS OF SEMI-RIGID COMPOSITE FRAMES UNDER VERTICAL LOADS[J]. Engineering Mechanics, 2007, 24(12): 59-064.
    [9]XIE Xue-bin, XIAO Ying-xiong, PAN Chang-liang, SHU Shi. APPLICATION OF ALGEBRAIC MULTIGRID METHOD IN FINITE ELEMENT ANALYSIS OF ROCK MECHANICS[J]. Engineering Mechanics, 2005, 22(5): 165-170.
    [10]Wang Xinmin. THE FINITE ELEMENT ANALYSIS FOR LARGE DEFLECTION OF SPACE TRUSSES[J]. Engineering Mechanics, 1997, 14(4): 98-103.
  • Cited by

    Periodical cited type(14)

    1. 尹越,韩磊旺,徐丽森,李福康. 基于孔洞扩张模型的偏心受力焊接球节点延性断裂数值模拟. 工程力学. 2025(02): 190-198 . 本站查看
    2. 郭勇,杨明川,秦瑞冰,杨红,李乾坤. 风力发电机主轴表面裂纹应力强度因子计算. 机械工程师. 2025(02): 104-107+112 .
    3. 陈桥,姜健,蔡文玉,陈伟,叶继红. 基于SMCS模型的高强螺栓及节点火灾全过程断裂性能模拟. 工程力学. 2024(02): 56-70+159 . 本站查看
    4. 李祥,马娟娟,余丰. 一种新的耦合型塑性损伤本构模型预测高强钢损伤断裂. 力学季刊. 2024(03): 717-729 .
    5. 刘永健,赵瑞,姜磊,傅一晟. 矩形钢管K型节点复合型应力强度因子计算方法研究. 工程力学. 2023(05): 182-194 . 本站查看
    6. 郭宏超,蔡欣悦,李国强,王彦博,刘云贺. 湿热周浸环境下高强钢对接焊缝的疲劳性能. 建筑材料学报. 2022(08): 823-829 .
    7. 李文超,景媛. 一种改进的Xue-Wierzbicki延性断裂模型. 塑性工程学报. 2022(11): 127-137 .
    8. 郭宏超,魏欢欢,杨迪雄,刘云贺,王振山,田建勃. 海洋腐蚀环境下Q690高强钢材疲劳性能试验研究. 土木工程学报. 2021(05): 36-45 .
    9. 张毅,薛世峰,韩丽美,周博,刘建林,贾朋. 半结晶聚合物损伤演化的实验表征与数值模拟. 力学学报. 2021(06): 1671-1683 .
    10. 葛建舟,黄学伟,赵军,赵威,魏晨晨. Q690D高强钢基于循环微孔扩展模型的断裂预测分析. 钢结构(中英文). 2021(07): 18-28 .
    11. 黄学伟,张潇舸,魏晨晨,赵军,葛建舟. Q690D钢材十字形焊接接头高温后的断裂破坏试验研究. 建筑科学与工程学报. 2021(05): 56-65 .
    12. 童乐为,牛立超,任珍珍,ZHAO Xiao-ling. Q550D高强钢焊接节点疲劳强度试验研究. 工程力学. 2021(12): 214-222+248 . 本站查看
    13. 韩丽美,张毅,叶贵根,薛世峰,贾朋. 应力三轴度对聚乙烯材料损伤及断裂的影响. 中南大学学报(自然科学版). 2021(11): 3843-3854 .
    14. 汪凤,高晓飞,卢鹏超,范玉然,隋永莉. 管件防脆断控制技术现状与思考. 油气储运. 2020(08): 871-878 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (649) PDF downloads (126) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return