HU Wei-cheng, YANG Qing-shan, YAN Bo-wen, ZHANG Jian. LARGE-EDDY-SIMULATION ON COMPLEX TERRAIN BASED ON SPECTRAL ELEMENT METHOD[J]. Engineering Mechanics, 2018, 35(12): 7-14. DOI: 10.6052/j.issn.1000-4750.2017.08.0663
Citation: HU Wei-cheng, YANG Qing-shan, YAN Bo-wen, ZHANG Jian. LARGE-EDDY-SIMULATION ON COMPLEX TERRAIN BASED ON SPECTRAL ELEMENT METHOD[J]. Engineering Mechanics, 2018, 35(12): 7-14. DOI: 10.6052/j.issn.1000-4750.2017.08.0663

LARGE-EDDY-SIMULATION ON COMPLEX TERRAIN BASED ON SPECTRAL ELEMENT METHOD

More Information
  • Received Date: August 29, 2017
  • Revised Date: November 28, 2017
  • Based on open-source Nek5000, a grid generation method of SEM (Spectral Element Method) for complex terrain was put forward, and the wind field of Askervein hill was numerically simulated by LES (Large-eddy-simulation). The result of numerical simulation was compared with the field observation and another numerical result. The comparisons show that the wind speed acceleration factor on line-A obtained by LES simulation is in good agreement with the results from the field observation. SEM combined with LES turbulence model can be used to predict wind energy resource distribution on complex terrain.
  • [1]
    靳晶新, 叶林, 吴丹曼, 等. 风能资源评估方法综述[J]. 电力建设, 2017, 38(4):1-8. Jin Jingxin, Ye Lin, Wu Danman, et al. Review of wind energy assessment methods[J]. Electric Power Construction, 2017, 38(4):1-8. (in Chinese)
    [2]
    遆子龙, 李永乐, 廖海黎. 地表粗糙度对山区峡谷地形桥址区风场影响研究[J]. 工程力学, 2017, 34(6):73-81. Ti Zilong, Li Yongle, Liao Haili. Effect of ground surface roughness on wind field over bridge site with a gorge in mountainous area[J]. Engineering Mechanics, 2017, 34(6):73-81. (in Chinese)
    [3]
    刘志文, 薛亚飞, 季建东, 等. 黄河复杂地形桥位风特性现场实测[J]. 工程力学, 2015, 32(增刊):233-239. Liu Zhiwen, Xue Yafei, Ji Jiandong, et al. Field measure-ment of wind characteristics of a bridgesite with complex yellow river terrain[J]. Engineering Mechanics, 2015, 32(Suppl):233-239. (in Chinese)
    [4]
    Tse K T, Weerasuriya A U, Zhang X, et al. Effects of twisted wind flows on wind conditions in passages between buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 167:87-100.
    [5]
    Bilal M, Birkelund Y, Homola M, et al. Wind over complex terrain-Microscale modelling with two types of mesoscale winds at Nygårdsfjell[J]. Renewable Energy, 2016, 99:647-653.
    [6]
    Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer:wall function problems[J]. Atmospheric Environment, 2007, 41(2):238-252.
    [7]
    Yan B W, Li Q S, He Y C, et al. RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε, model[J]. Environmental Fluid Mechanics, 2016, 16(1):1-23.
    [8]
    Lopes A S, Palma J M L M, Castro F A. Simulation of the Askervein flow. Part 2:Large-eddy simulations[J]. Boundary-Layer Meteorology, 2007, 125(1):85-108.
    [9]
    Liu Z, Ishihara T, He X, et al. LES study on the turbulent flow fields over complex terrain covered by vegetation canopy[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 155:60-73.
    [10]
    张来平, 贺立新, 刘伟, 等. 基于非结构/混合网格的高阶精度格式研究进展[J]. 力学进展, 2013, 43(2):202-236. Zhang Laiping, He Lixin, Liu Wei, et al. High order accuracy scheme research based on unstructure/hybrid grid[J]. Advances In Mechanics, 2013, 43(2):202-236. (in Chinese)
    [11]
    Patera A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3):468-488.
    [12]
    Korczak K Z, Patera A T. An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry[J]. Journal of Computational Physics, 1986, 62(2):361-382.
    [13]
    Komatitsch D, Vilotte J P. The spectral element method:an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 2012, 88(2):368-392.
    [14]
    Lee U. Spectral element method in structural dynamics[M]. Singapore:J. Wiley & Sons Asia, 2009.
    [15]
    Giraldo F X, Warburton T. A nodal triangle-based spectral element method for the shallow water equations on the sphere[J]. Journal of Computational Physics, 2005, 207(1):129-150.
    [16]
    Fischer P F, Lottes J W, Kerkemeier S G. Nek5000 Web Page[CP]. http://nek5000.mcs.anl.gov,2008.
    [17]
    Smagorinsky J S. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3):99-164.
    [18]
    Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids, 1991, 3(7):1760-1965.
    [19]
    Lilly D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids, 1992, 4(4):633-633.
    [20]
    Kanchi H, Sengupta K, Mashayek F. Effect of turbulent inflow boundary condition in LES of flow over a backward-facing step using spectral element method[J]. International Journal of Heat & Mass Transfer, 2013, 62(1):782-793.
    [21]
    Taylor P A, Teunissen H W. The Askervein hill project:overview and background data[J]. Boundary-Layer Meteorology, 1987, 39(1-2):15-39.
    [22]
    梁思超, 张晓东, 康顺. 复杂地形风场绕流数值模拟方法[J]. 工程热物理学报, 2011, 32(6):945-948. Liang Sichao, Zhang Xiaodong, Kang Shun. Numerical simulation for wind flow around complex terrain[J]. Journal of Engineering Thermophysics, 2011, 32(6):945-948. (in Chinese)
    [23]
    Stangroom P. CFD modelling of wind flow over terrain[D]. Nottingham:University of Nottingham, 2004.
    [24]
    吕振峰. 复杂地形对风速分布影响的数值模拟研究[D]. 昆明, 昆明理工大学, 2015. Lü Zhenfeng. Research on influence of complex terrain on wind speed distribution of wind field[D]. Kunming:Kunming University of Science and Technology, 2015. (in Chinese)
    [25]
    邓院昌, 刘沙, 余志, 等. 实际地形风场CFD模拟中粗糙度的影响分析[J]. 太阳能学报, 2010, 31(12):1644-1648. Deng Yuanchang, Liu Sha, Yu Zhi, et al. Research on roughness of CFD simulation on complex terrain[J]. Acta Energiae Solaris Sinica, 2010, 31(12):1644-1648. (in Chinese)
    [26]
    Karamanos G S, Sherwin S J. A high order splitting scheme for the Navier-Stokes equations with variable viscosity[J]. Applied Numerical Mathematics, 2000, 33(1-4):455-462.
    [27]
    Castro F A, Palma J M L M, Lopes A S. Simulation of the Askervein flow. part 1:reynolds averaged navier-stokes equations (k ∈ turbulence model)[J]. Boundary-Layer Meteorology, 2003, 107(3):501-530.

Catalog

    Article Metrics

    Article views (529) PDF downloads (136) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return