吴智深, 侯士通, 黄玺, 黄璜. 钢筋混凝土结构移动式精准检测技术开发[J]. 工程力学, 2024, 41(1): 1-16. DOI: 10.6052/j.issn.1000-4750.2023.07.ST02
引用本文: 吴智深, 侯士通, 黄玺, 黄璜. 钢筋混凝土结构移动式精准检测技术开发[J]. 工程力学, 2024, 41(1): 1-16. DOI: 10.6052/j.issn.1000-4750.2023.07.ST02
WU Zhi-shen, HOU Shi-tong, HUANG Xi, HUANG Huang. DEVELOPMENT OF MOBILE PRECISION DETECTION TECHNOLOGY FOR REINFORCED CONCRETE STRUCTURES[J]. Engineering Mechanics, 2024, 41(1): 1-16. DOI: 10.6052/j.issn.1000-4750.2023.07.ST02
Citation: WU Zhi-shen, HOU Shi-tong, HUANG Xi, HUANG Huang. DEVELOPMENT OF MOBILE PRECISION DETECTION TECHNOLOGY FOR REINFORCED CONCRETE STRUCTURES[J]. Engineering Mechanics, 2024, 41(1): 1-16. DOI: 10.6052/j.issn.1000-4750.2023.07.ST02

钢筋混凝土结构移动式精准检测技术开发

DEVELOPMENT OF MOBILE PRECISION DETECTION TECHNOLOGY FOR REINFORCED CONCRETE STRUCTURES

  • 摘要: 无损检测技术是一种在不损害材料及结构服役性能的前提下,对其性质进行评估和测量的检测技术。然而,随着无损检测技术的发展和实践,结构内部的复杂损伤检测缺乏多层次精准性成为该领域的难点和核心问题。该文旨在结合国内外的研究成果,对无损检测技术的发展、分类和挑战进行梳理和分析,并在此基础上,介绍作者研究团队建立的一套由宏观到细观,再到内部的全面精准检测系统研究成果。针对表面宏观识别与细观定量识别,作者团队开发了表观病害视觉检测技术,包括构建的空间基准点自动追踪融合和亚像素级病害分割的全景图像快速拼接及表观病害厘米级定位方法,以及提出的全景图像中0.05 mm~0.2 mm多尺寸微细裂缝同步识别及真伪判别的人工智能算法。针对结构内部损伤识别,作者团队首创了智能变频敲击声波扫描及各类损伤精准识别新原理,发明建立了自适应激励分布移动敲击声波的损伤检测评估理论方法、声波及声纹图像特征人工智能算法及智能装备关键技术。经过实验验证,裂缝检测中宽度为0.05 mm时最大深度可达40 mm,剥离检测中最大深度可达400 mm,最小识别范围为50 mm。

     

    Abstract: Non-destructive testing (NDT) technology is a type of testing technology that evaluates and measures material properties without causing damage to the material or its structural performance. Despite the advancements in NDT technology, the detection of complex internal damages at multiple levels remains a significant challenge in the field. The objective of this study is to review and analyze the development, classification and challenges of NDT technology by combining domestic and international research results. On this basis, the study introduces a set of research results on a comprehensive and precise inspection system developed by the author's research team, which covers macro to mesoscopic levels and internal structures. For macroscopic surface identification and quantitative mesoscopic identification of apparent defects, the author’s team has developed visual detection technology. This technology involves rapid panoramic image stitching of spatial reference points and sub-pixel-level disease segmentation, as well as centimeter-level positioning methods for apparent defects. Additionally, the team proposed an artificial intelligence algorithm capable of simultaneously identifying multi-size micro-meso cracks ranging from 0.05 to 0.2 mm, and authenticating panoramic images. Regarding structural internal damage identification, the author’s team pioneered a new principle of intelligent variable-frequency acoustic hammering scanning, enabling precise identification of various types of damage. The team also established the theoretical method of damage detection and assessment using adaptive excitation distribution of mobile acoustic hammering, artificial intelligence algorithms for acoustic wave and acoustic image features, and key technologies for intelligent equipment. Experimental verification has shown that the maximum depth of crack detection is up to 40 mm with a width of 0.05 mm, the maximum depth of delamination detection is up to 400 mm and the minimum recognition range is 50 mm.

     

/

返回文章
返回