双重电磁谐振式调谐质量阻尼器的参数优化及对结构减振分析

PARAMETER OPTIMIZATION AND VIBRATION REDUCTION ANALYSIS OF DOUBLE ELECTROMAGNETIC SHUNT TUNED MASS DAMPER

  • 摘要: 利用电磁阻尼单元代替经典调谐质量阻尼器中的黏性阻尼单元,形成一种具有结构减振功能的新型电磁谐振式调谐质量阻尼器(electromagnetic shunt tuned mass damper,EMS-TMD)。为进一步提升阻尼器的减振性能和鲁棒性,设计了双重电磁谐振式调谐质量阻尼器(DEMS-TMD)减振方案。依据达朗伯定理,建立地震作用下DEMS-TMD与单自由度结构耦合振动系统的动力学模型。利用蒙特卡洛-模式搜索法数值优化方法,以主结构位移的动力放大系数最大值最小为目标函数,优化得到DEMS-TMD的结构频率比、电子频率比、电磁阻尼比和机电耦合系数的最优参数,为减振参数设计提供理论指导。通过频域和时域两种方法仿真分析了DEMS-TMD对结构的减振性能。结果表明:在频域分析中,DEMS-TMD的主结构位移峰值和频响面积均优于传统并联双调谐质量阻尼器(double tuned mass damper,DTMD);在时域分析中,DEMS-TMD对结构位移、加速度峰值和均方根的减振性能均优于传统DTMD,有效地提高了对结构的减振效果。

     

    Abstract: A novel electromagnetic shunt tuned mass damper (EMS-TMD) is proposed for structural vibration control. A new feature of the damper is the electromagnetic damping element that replaces the viscous damping of the traditional double tuned mass dampers. To further improve the damping performance and robustness of the damper, a double electromagnetic shunt tuned mass damper (DEMS-TMD) is designed. According to the Alembert’s theorem, the dynamic model of the coupled system DEMS-TMD and a single degree of freedom structure under seismic excitation is established. Based on the Monte Carlo pattern search method with the target of minimizing the value of the maximum dynamic amplification coefficient of the main structure displacement, the optimal parameters of DEMS-TMD, the structure frequency ratio, the electrical frequency ratio, the electromagnetic damping ratio and the electromechanical coupling coefficient are obtained, which provides the theoretical guidance for damping parameter design. The frequency and time domain simulations of the DEMS-TMD are conducted to analyze the performance of the vibration suppression of the DEMS-TMD. The results show that the reduction of the peak and RMS values of main structure displacement of the DEMS-TMD is superior to traditional parallel double tuned mass dampers (DTMD) in the frequency domain simulations. The reduction of the peak and RMS values of displacement and acceleration of the DEMS-TMD is superior to traditional DTMD in the time domain simulations, which shows the better damping effect of the DEMS-TMD on structures.

     

/

返回文章
返回