宋凌寒, 王琛, 樊健生. 理论驱动的弹性结构体系图神经网络计算模型[J]. 工程力学, 2024, 41(2): 25-34. DOI: 10.6052/j.issn.1000-4750.2022.03.0275
引用本文: 宋凌寒, 王琛, 樊健生. 理论驱动的弹性结构体系图神经网络计算模型[J]. 工程力学, 2024, 41(2): 25-34. DOI: 10.6052/j.issn.1000-4750.2022.03.0275
SONG Ling-han, WANG Chen, FAN Jian-sheng. A THEORY-DRIVEN MODEL FOR ELASTIC ANALYSIS OF STRUCTURAL SYSTEMS BASED ON GRAPH NEURAL NETWORK[J]. Engineering Mechanics, 2024, 41(2): 25-34. DOI: 10.6052/j.issn.1000-4750.2022.03.0275
Citation: SONG Ling-han, WANG Chen, FAN Jian-sheng. A THEORY-DRIVEN MODEL FOR ELASTIC ANALYSIS OF STRUCTURAL SYSTEMS BASED ON GRAPH NEURAL NETWORK[J]. Engineering Mechanics, 2024, 41(2): 25-34. DOI: 10.6052/j.issn.1000-4750.2022.03.0275

理论驱动的弹性结构体系图神经网络计算模型

A THEORY-DRIVEN MODEL FOR ELASTIC ANALYSIS OF STRUCTURAL SYSTEMS BASED ON GRAPH NEURAL NETWORK

  • 摘要: 该文提出了一个理论驱动的弹性结构体系图神经网络计算模型StructGNN-E,能够高保真数字化结构体系的拓扑连接关系与构件组成信息,无需外部标签数据即可实现对任意杆系结构体系的弹性内力分析,且计算结果具有理论正确性。总结了结构体系层次的特点,理论分析了常规神经网络的不可行性,进而采用了基于非欧图数据的图神经网络架构,能够有效刻画结构体系的非序列性与非平移不变性。考虑到体系层次数据严重匮乏以及常规智能计算方法忽视力学意义的问题,通过将三大力学方程与深度学习推理过程相结合,提出了适用于体系内力分析的理论驱动模式,实现了不依赖于外部标签数据的智能求解方案。数值试验表明:StructGNN-E模型能够高精度完成杆系结构体系的弹性内力分析,且在大规模框架结构计算中计算效率提升可达36%。通过具体的对比试验,证明了常规深度学习模型与数据驱动模式在体系层次的不适用性,进一步阐释了StructGNN-E模型的有效性与合理性。

     

    Abstract: We propose a physics-informed elastic structural analysis framework based on graph neural network: StructGNN-E, which is capable of digitalizing the topological features and member composition information of structure systems with high fidelity, and performing elastic structural analysis on arbitrary structures of bar systems without labeled dataset to produce theoretically correct results. We summarize the main characteristics of the problem concerned and the limitations of typical neural networks on capturing static features on system level, and introduce the graph neural network (GNN) to describe the non-seriality and non-transitional-invariance of structural systems. By considering the scarcity of available dataset and inadequacy of typical deep learning methods which ignores mechanical interpretations, we build up a physics-informed framework imbedded with mechanical theories including equilibrium and constitutive equations as prior information, which offer an innovative solution to structural analysis on neural networks without labeled dataset. Numerical experiments demonstrated that StructGNN-E is able to obtain results with high accuracy on the system level, and we observe a 36% increase on the efficiency for elastic analysis of large-scale frame structures. By comparison tests, we show the inefficiency of typical neural networks and data-driven models on the system level, and further demonstrate the validity and rationality of StructGNN-E.

     

/

返回文章
返回