李聪, 陈宝春, 胡文旭, 苏家战. 钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算[J]. 工程力学, 2023, 40(6): 110-121. DOI: 10.6052/j.issn.1000-4750.2021.11.0881
引用本文: 李聪, 陈宝春, 胡文旭, 苏家战. 钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算[J]. 工程力学, 2023, 40(6): 110-121. DOI: 10.6052/j.issn.1000-4750.2021.11.0881
LI Cong, CHEN Bao-chun, HU Wen-xu, SU Jia-zhan. CALCULATION OF SHEAR BEARING CAPACITY, SLIP AND STIFFNESS OF HEADED STUDS IN STEEL-UHPC COMPOSITE SLAB[J]. Engineering Mechanics, 2023, 40(6): 110-121. DOI: 10.6052/j.issn.1000-4750.2021.11.0881
Citation: LI Cong, CHEN Bao-chun, HU Wen-xu, SU Jia-zhan. CALCULATION OF SHEAR BEARING CAPACITY, SLIP AND STIFFNESS OF HEADED STUDS IN STEEL-UHPC COMPOSITE SLAB[J]. Engineering Mechanics, 2023, 40(6): 110-121. DOI: 10.6052/j.issn.1000-4750.2021.11.0881

钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算

CALCULATION OF SHEAR BEARING CAPACITY, SLIP AND STIFFNESS OF HEADED STUDS IN STEEL-UHPC COMPOSITE SLAB

  • 摘要: 钢-Ultra-high performance concrete (UHPC)组合桥面板在大跨桥梁中具有较多应用,栓钉连接件对其组合作用的发挥起关键作用。为探究钢-UHPC组合板中栓钉抗剪性能,开展了6个栓钉抗剪推出试验,收集了6种抗剪承载力计算方法、5种抗剪滑移预测模型和10种抗剪刚度计算方法,根据试验结果分别进行计算分析。试验结果表明:所有试件中的栓钉均表现为焊缝与根部交界处剪断,UHPC板除在栓钉根部位置出现局部破损外,基本保持完好;栓钉的抗剪滑移曲线经历弹性、弹塑性和下降3个阶段;所有试件最大滑移量均小于3.5 mm,可取0.1 mm作为弹性极限滑移量。计算结果表明:现有部分规范计算UHPC中栓钉抗剪承载力时不考虑焊缝影响,计算结果偏低,根据该文2组试验数据和收集29组有效数据,提出考虑焊缝影响的计算式,建议UHPC中栓钉焊缝贡献系数取1.1;不同抗剪滑移模型预测结果差异大,建议采用反比例函数形式的模型预测,较为精确;栓钉的抗剪刚度取值由于未考虑栓钉实际处于受力状态,计算结果差异大,建议取滑移量0.1 mm对应的刚度作为弹性抗剪刚度;建立了栓钉抗剪滑移模型与抗剪刚度的关系式,在缺少试验数据时可为近似计算提供参考。

     

    Abstract: Steel-Ultra-high performance concrete (UHPC) composite slab has many applications in long-span bridges, in which the headed stud connectors play a key role. To explore the shear resistance of headed studs in steel-UHPC composite slab, six push-out specimens of headed stud were carried out, and different calculation methods were evaluated based on the test results, including six methods to calculate the shear bearing capacity, five models to predict the shear slip, and ten methods to calculate the shear stiffness. The test results show that the headed studs in all specimens appeared to break at the junction of the weld root, and the UHPC slabs remain intact except for partial damage at the root of the studs. The shear-slip curves of headed stud were divided into three stages, i.e., the elastic stage, the elastic-plastic stage and the descending stage. The maximum slip of all specimens is less than 3.5 mm, and the limit of elastic slip can be taken as 0.1 mm. The results show that the calculated shear resistance of headed stud in UHPC was lower than the test results according to some specifications without considering the contribution of stud welds. It is recommend that the stud welds contribution coefficient can be taken as 1.1 on the basis of the results of 2 sets of tests in this research and 29 sets of other effective data. The prediction results of different shear-slip models were different from the test results. It is suggested that the inverse proportional function model should be used to achieve accurate prediction. The actual force state of stud was not considered in the calculation of shear stiffness, resulting in significant difference in the calculation results. It is recommended that the shear stiffness corresponding to the slip of 0.1 mm can be taken as the elastic shear stiffness. The relationship between the shear-slip model and the shear stiffness of headed stud was established to provide a reference for calculation without test data.

     

/

返回文章
返回