THE UNIAXIAL COMPRESSION FATIGUE PERFORMANCE OF RUBBER CONCRETE
-
摘要: 为掌握橡胶混凝土单轴受压疲劳性能,用粒径为30目的橡胶颗粒以不同掺量代砂制备橡胶混凝土,进行等幅循环荷载单轴受压疲劳试验研究。采用Miner累积损伤理论定义损伤量,并建立橡胶混凝土疲劳应变的损伤模型。使用概率统计方法对橡胶混凝土疲劳寿命的试验结果进行可靠性分析,得到等幅循环荷载作用下橡胶混凝土单轴受压疲劳寿命分布规律。结果表明:应力水平相同时,橡胶混凝土的疲劳寿命优于普通水泥混凝土,且随橡胶掺量的增加,混凝土的疲劳寿命随之提高。橡胶混凝土的疲劳应变变化符合普通混凝土疲劳应变发展的三阶段规律,橡胶混凝土疲劳寿命服从对数正态分布。采用双对数方程对橡胶混凝土的疲劳寿命进行线性回归分析,可得到P-S-N曲线及疲劳极限强度。Abstract: To study the uniaxial stress fatigue performance of rubber concrete, equal cyclic load uniaxial stress fatigue tests were carried out. Rubber particles with a particle size of 30 meshes were used to replace sand by different dosages to prepare the rubber concrete. The Miner’s cumulative damage theory was used to define the damage quantity and establish the damage model of the rubber concrete fatigue strain. Probability and statistical methods are used to analyze the reliability of the test results of the fatigue life of rubber concrete. The distribution of the fatigue life of rubber concrete under uniaxial compressive constant amplitude cyclic loading is obtained. The results show that, with the same stress level, the fatigue life of rubber concrete is better than ordinary cement concrete and increases with the increase of rubber mixing quantity. The fatigue strain change of rubber concrete meets the three-stage law of ordinary concrete fatigue strain development. Its fatigue life follows the lognormal distribution. The linear regression analysis of the fatigue life of rubber concrete yields the P-S-N curve and fatigue limit strength.
-
Key words:
- rubber concrete /
- uniaxial compression /
- fatigue /
- cumulative damage /
- reliability
-
表 1 水泥物理性能
Table 1. Cement physical properties
标准稠度用水量/(%) 细度80 μm /(%) 安定性(沸煮法) 凝结时间/min 初凝 终凝 27 5.2 合格 205 270 表 2 橡胶颗粒技术指标
Table 2. Technical index of rubber particles
橡胶
粒径/目平均粒
度/μm筛网粒
径/μm过筛率/
(%)灰分/
(%)丙酮抽
出物/(%)拉伸强
度/MPa拉断伸
长率/(%)30 562 600 ≥90 ≤8 ≤8 ≥15 ≥500 表 3 试件配合比
Table 3. Concrete mix ratio
/(kg/m3) 橡胶掺量/(%) 橡胶 砂 水 水泥 粉煤灰 碎石 减水剂 0 0.0 790.0 154 300 40 1140 6.8 5 18.8 750.5 154 300 40 1140 7.5 10 37.7 711.0 154 300 40 1140 7.8 15 56.5 671.5 154 300 40 1140 8.2 表 4 立方体抗压强度和轴心抗压强度
Table 4. Cube compressive strength and axial compressive strength
/MPa 试件编号 立方体抗压强度 轴心抗压强度 NC0.45 53.6 39.4 CRC30-5 45.3 35.2 CRC30-10 39.5 28.3 CRC30-15 31.8 25.9 表 5 疲劳寿命试验结果
Table 5. Fatigue life test results
试件编号 应力水平 疲劳寿命/次 NC0.45 0.6 11 6576 81 736 69 585 0.7 49 674 37 052 30 922 0.8 24 947 14 902 8 959 0.9 6 422 4 788 2 383 CRC30-5 0.6 112 279 106 738 93 788 0.7 75 982 68 292 61 772 0.8 46 527 31 953 20 583 0.9 7 209 4879 3 625 CRC30-10 0.6 178 128 162 152 146 691 0.7 107 768 94 342 89 433 0.8 62 927 53 286 41 773 0.9 14 239 11 434 8 481 CRC30-15 0.6 235 247 214 231 192 964 0.7 134 670 128 493 119 664 0.8 97 281 90 918 83 185 0.9 39 674 36 702 34 635 表 6 疲劳寿命分布参数
Table 6. Fatigue life distribution parameters
编号 $ S $ ${\hat {\mu} _\rm{s}}$ ${\hat {\sigma} _\rm{s}}$ $ {R^2} $ NC0.45 0.6 4.941 0.175 0.906 0.7 4.585 0.157 0.964 0.8 4.174 0.332 1.000 0.9 3.622 0.339 0.896
CRC30-50.6 5.017 0.062 0.881 0.7 4.835 0.067 0.999 0.8 4.495 0.265 0.996 0.9 3.701 0.225 0.988 CRC30-10 0.6 5.209 0.063 0.999 0.7 4.986 0.064 0.895 0.8 4.715 0.134 0.976 0.9 4.046 0.169 0.984 CRC30-15 0.6 5.329 0.065 0.998 0.7 5.105 0.039 0.969 0.8 4.956 0.051 0.986 0.9 4.568 0.044 0.985 表 7 疲劳寿命分布的Kolmogolov检验结果
Table 7. Results of Kolmogolov fit goodness test for fatigue life distribution
编 号 应力水平 统计量$ {D_n} $观测值 NC0.45 0.6 0.614 0.7 0.591 0.8 0.599 0.9 0.591 CRC30-5 0.6 0.591 0.7 0.628 0.8 0.595 0.9 0.626 CRC30-10 0.6 0.595 0.7 0.618 0.8 0.595 0.9 0.595 CRC30-15 0.6 0.599 0.7 0.629 0.8 0.595 0.9 0.591 表 8 橡胶混凝土不同失效概率下的疲劳寿命
Table 8. Fatigue life of rubber concrete with different failure probabilities
试件编号 应力水平 失效概率$ P $ 0.05 0.1 0.2 0.3 0.4 0.5 NC0.45 0.6 44 807 52 028 57 323 62 145 78 864 87 241 0.7 21 231 24 259 26 451 28 428 35 164 38 479 0.8 4 230 5 614 6 745 7 859 12 340 14 940 0.9 1 153 1 539 1 857 2 171 3 442 4 185 CRC30-5 0.6 82 145 86 593 89 607 92 197 100 285 103 923 0.7 53 021 56 145 58 269 60 101 65 847 68 444 0.8 11 435 14 327 16 584 18 734 26 841 31 259 0.9 2 143 2 594 2 937 3 257 4 418 5 028 CRC30-10 0.6 127 153 134 217 139 008 143 130 156 017 161 822 0.7 75 982 80 225 83 104 85 582 93 329 96 820 0.8 31 156 34 937 37 632 40 036 48 058 51 925 0.9 5 847 6 754 7 416 8 017 10 090 11 123 CRC30-15 0.6 166 813 176 311 182 759 188 312 205 697 213 539 0.7 110 059 113 744 116 199 118 286 124 663 127 467 0.8 74 353 77 663 79 888 81 790 87 671 90 289 0.9 31 245 32 449 33 255 33 941 36 050 36 983 -
[1] 袁坚, 杜欢政. 生产者责任延伸制度ERP下废旧轮胎循环利用研究[J]. 再生资源与循环经济, 2020, 13(3): 22 − 24. doi: 10.3969/j.issn.1674-0912.2020.03.007YUAN Jian, DU Huanzheng. Research on recycling of waste tire under producer liability extension system ERP [J]. Renewable Resources and Circular Economy, 2020, 13(3): 22 − 24. (in Chinese) doi: 10.3969/j.issn.1674-0912.2020.03.007 [2] 杨春峰, 杨敏. 废旧橡胶混凝土力学性能研究进展[J]. 混凝土, 2011(12): 98 − 100,109. doi: 10.3969/j.issn.1002-3550.2011.12.030YANG Chunfeng, YANG Min. Research progress in mechanical performance of waste rubber concrete [J]. Concrete, 2011(12): 98 − 100,109. (in Chinese) doi: 10.3969/j.issn.1002-3550.2011.12.030 [3] FAKHRI M, FARSHAD S K. The effect of waste rubber particles and silica fume on themechanical properties of roller compacted concrete pavement [J]. Journal of Cleaner Production, 2016, 129: 521 − 530. [4] MATSUSHITA H, TOSKUMITSU Y. A study of on compressive fatigue strength of concrete considered survival probability [J]. Proceedings of the Japan Society of Civil Engineers, 1979(284): 127 − 138. [5] KIM J K, KIM Y Y. Experientnal study of the fatigue behavior of high strength concrete [J]. Cement and Concrete Research, 1996(26): 1513 − 1523. [6] GUO M M, FENG Z R, WANG X J. Effect of pre-crack on fatigue behaviors of concrete under tension and compression loading [J]. Materials Science Forum, 2015(873): 110 − 114. [7] MEDEIROS A, ZHANG X X, RUIZ G, et al. Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete [J]. International Journal of Fatigue, 2015(70): 342 − 350. [8] 吴佩刚, 赵光仪, 白利明. 高强混凝土抗压疲劳性能研究[J]. 土木工程学报, 1994, 27(3): 33 − 40.WU Peigang, ZHAO Guangyi, BAI Liming. Research on compressive fatigue performance of high strength concrete [J]. China Civil Engineering Journal, 1994, 27(3): 33 − 40. (in Chinese) [9] 姜德义, 刘文浩, 陈结, 等. 分级不连续循环载荷作用下混凝土的疲劳特性[J]. 东南大学学报(自然科学版), 2019, 49(4): 631 − 637.JIANG Deyi, LIU Wenhao, CHEN Jie, et al. Fatigue characteristics of concrete under graded discontinuous circular load [J]. Journal of Southeast University (Natural Science Edition), 2019, 49(4): 631 − 637. (in Chinese) [10] 冯文贤, 刘锋, 郑万虎. 橡胶混凝土疲劳性能的试验研究[J]. 建筑材料学报, 2012, 15(4): 469 − 473. doi: 10.3969/j.issn.1007-9629.2012.04.006FENG Wenxian, LIU Feng, ZHENG Wanhu. Test of fatigue performance of rubber concrete [J]. Journal of Building Materials, 2012, 15(4): 469 − 473. (in Chinese) doi: 10.3969/j.issn.1007-9629.2012.04.006 [11] 罗素蓉, 承少坤, 肖建庄, 等. 纳米改性再生骨料混凝土单轴受压疲劳性能[J]. 工程力学, 2021, 38(10): 134 − 144. doi: 10.6052/j.issn.1000-4750.2020.09.0700LUO Shurong, CHENG Shaokun, XIAO Jianzhuang, et al. Fatigue behavior of nano-modified recycled aggregate concrete under uniaxial compression [J]. Engineering Mechanics, 2021, 38(10): 134 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0700 [12] VISWANATH S, KUCHMA D A, LAFAVE J M. Experimental investigation of concrete fatigue in axial compression [J]. ACI Structural Journal, 2021, 118(1): 263 − 276. [13] 薛刚, 孙立所, 刘佳香, 等. 橡胶混凝土弯曲疲劳性能研究[J]. 长江科学院院报, 2021, 38(11): 149 − 156.XUE Gang, SUN Lizhu, LIU Jiaxiang, et al. Study on flexural fatigue performance of rubber concrete [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 149 − 156. (in Chinese) [14] 王瑞敏, 宋玉普, 赵国藩. 混凝土疲劳破坏的概率分析[J]. 大连理工大学学报, 1991, 31(3): 331 − 336.WANG Ruimin, SONG Yupu, ZHAO Guofan. Probability analysis of fatigue damage of concrete [J]. Journal of Dalian University of Technology, 1991, 31(3): 331 − 336. (in Chinese) [15] 李游, 李传习, 陈卓异, 等. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2): 111 − 123. doi: 10.6052/j.issn.1000-4750.2019.03.0114LI You, LI Chuanxi, CHEN Zhuoyi, et al. Fatigue reliability analysis of U-Ribs detail of steel box girder based on monitoring data [J]. Engineering Mechanics, 2020, 37(2): 111 − 123. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0114 [16] 董毓利, 谢和平, 赵鹏. 受压混凝土理想弹塑性损伤本构模型[J]. 力学与实践, 1996, 18(6): 14 − 17.DONG Yuli, XIE Heping, ZHAO Peng. Ideal elasoplastic damage constitutive model of pressed concrete [J]. Mechanics and Practice, 1996, 18(6): 14 − 17. (in Chinese) [17] SPOONER D C, DOUGILL J W. A quantitative assessment of damage sustained in concrete during compressive loading [J]. Magazine of Concrete Research, 1975, 27(92): 151 − 160. doi: 10.1680/macr.1975.27.92.151 [18] 赵东拂, 高海静, 刘禹辰, 等. 高温后高强混凝土受压疲劳性能研究[J]. 工程力学, 2018, 35(8): 201 − 207, 229. doi: 10.6052/j.issn.1000-4750.2017.04.0316ZHAO Dongfu, GAO Haijing, LIU Yuchen, et al. Study on pressure fatigue performance of high strength concrete after high temperature [J]. Engineering Mechanics, 2018, 35(8): 201 − 207, 229. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0316 [19] 赵东拂, 高海静, 杨健辉. 混凝土双轴拉压、三轴拉压压变幅疲劳性能研究[J]. 工程力学, 2017, 34(8): 154 − 160. doi: 10.6052/j.issn.1000-4750.2016.04.0286ZHAO Dongfu, GAO Haijing, YANG Jianhui. Variable-amplitude fatigue properties of plain concrete under biaxial and tension-compresion and triaxial tension-compression-compression cyclic loading [J]. Engineering Mechanics, 2017, 34(8): 154 − 160. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.0286 [20] MINER M A. Cumulative damage in fatigue [J]. Journal of Applied Mechanics, 1945, 12(3): 159 − 164. [21] 欧进萍, 林燕清. 混凝土高周疲劳损伤性能劣化试验研究[J]. 土木工程学报, 1999, 32(5): 15 − 22. doi: 10.3321/j.issn:1000-131X.1999.05.003OU Jinping, LIN Yanqing. Experimental study on high weekly fatigue damage degradation of concrete [J]. China Civil Engineering Journal, 1999, 32(5): 15 − 22. (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.05.003 [22] MCCALL J T. Probability of fatigue failure of plainconcrete [J]. ACI Journal Proceedings, 1958, 55(8): 233 − 244. [23] 宋玉普. 混凝土结构的疲劳性能及设计原理 [M]. 北 京: 机械工业出版社, 2006.SONG Yupu. The fatigue performance and design principles of concrete structure [M]. Beijing: Machinery Industry Publishing House, 2006. (in Chinese) [24] 高镇同, 熊峻江. 疲劳可靠性 [M]. 北京: 北京航空航天大学出版社, 2000.GAO Zhentong, XIONG Junjiang. Fatigue reliability [M]. Beijing: Beijing University of Aerospace Press, 2000. (in Chinese) [25] SHI X P, FWA T F, TAN S A. Flexural fatigue strength of plain concrete [J]. ACI Mater, 1993: 2. [26] 过镇海, 时旭东. 钢筋混凝土原理和分析 [M]. 北京: 清华大学出版社, 2004.GUO Zhenhai, SHI Xudong. Principles and analysis of reinforced concrete [M]. Beijing: Tsinghua University Press, 2004. (in Chinese) -