留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶混凝土单轴受压疲劳性能研究

薛刚 朱浩君 许胜 刘利强

薛刚, 朱浩君, 许胜, 刘利强. 橡胶混凝土单轴受压疲劳性能研究[J]. 工程力学, 2022, 39(11): 203-211. doi: 10.6052/j.issn.1000-4750.2021.07.0539
引用本文: 薛刚, 朱浩君, 许胜, 刘利强. 橡胶混凝土单轴受压疲劳性能研究[J]. 工程力学, 2022, 39(11): 203-211. doi: 10.6052/j.issn.1000-4750.2021.07.0539
XUE Gang, ZHU Hao-jun, XU Sheng, LIU Li-qiang. THE UNIAXIAL COMPRESSION FATIGUE PERFORMANCE OF RUBBER CONCRETE[J]. Engineering Mechanics, 2022, 39(11): 203-211. doi: 10.6052/j.issn.1000-4750.2021.07.0539
Citation: XUE Gang, ZHU Hao-jun, XU Sheng, LIU Li-qiang. THE UNIAXIAL COMPRESSION FATIGUE PERFORMANCE OF RUBBER CONCRETE[J]. Engineering Mechanics, 2022, 39(11): 203-211. doi: 10.6052/j.issn.1000-4750.2021.07.0539

橡胶混凝土单轴受压疲劳性能研究

doi: 10.6052/j.issn.1000-4750.2021.07.0539
基金项目: 国家自然科学基金项目(51868063)
详细信息
    作者简介:

    薛 刚(1968−),男,内蒙古包头人,教授,博士,硕导,主要从事新型混凝土材料与结构研究(E-mail: xuegang-2008@126.com)

    许 胜(1991−),男,山东菏泽人,工程师,硕士,主要从事新型混凝土材料与结构研究(E-mail: xsh1991411@163.com)

    刘利强(1981−),男,山西大同人,硕士生,主要从事新型混凝土材料与结构研究(E-mail: 992107586@qq.com)

    通讯作者:

    朱浩君(1997−),男,湖北武汉人,硕士生,主要从事新型混凝土材料与结构研究(E-mail: zhuhaojun456@126.com)

  • 中图分类号: TU528.41

THE UNIAXIAL COMPRESSION FATIGUE PERFORMANCE OF RUBBER CONCRETE

  • 摘要: 为掌握橡胶混凝土单轴受压疲劳性能,用粒径为30目的橡胶颗粒以不同掺量代砂制备橡胶混凝土,进行等幅循环荷载单轴受压疲劳试验研究。采用Miner累积损伤理论定义损伤量,并建立橡胶混凝土疲劳应变的损伤模型。使用概率统计方法对橡胶混凝土疲劳寿命的试验结果进行可靠性分析,得到等幅循环荷载作用下橡胶混凝土单轴受压疲劳寿命分布规律。结果表明:应力水平相同时,橡胶混凝土的疲劳寿命优于普通水泥混凝土,且随橡胶掺量的增加,混凝土的疲劳寿命随之提高。橡胶混凝土的疲劳应变变化符合普通混凝土疲劳应变发展的三阶段规律,橡胶混凝土疲劳寿命服从对数正态分布。采用双对数方程对橡胶混凝土的疲劳寿命进行线性回归分析,可得到P-S-N曲线及疲劳极限强度。
  • 图  1  疲劳试验加载装置

    Figure  1.  Fatigue test loading device

    图  2  试件单轴受压疲劳破坏形态

    Figure  2.  Uniaxial compression fatigue failure form of test pieces

    图  3  疲劳裂纹扩展三阶段示意图

    Figure  3.  Three-stage schematic diagram of fatigue crack expansion

    图  4  最大疲劳应变曲线

    Figure  4.  Maximum fatigue strain curve

    图  5  疲劳寿命的对数正态分布

    Figure  5.  Lognormal distribution of fatigue life

    图  6  失效概率$ P $=0.5橡胶混凝土的双对数疲劳方程

    Figure  6.  Probability of failure$ P $=0.5 double logarithmic fatigue equation for rubber concrete

    表  1  水泥物理性能

    Table  1.   Cement physical properties

    标准稠度用水量/(%)细度80 μm /(%)安定性(沸煮法)凝结时间/min
    初凝终凝
    275.2合格205270
    下载: 导出CSV

    表  2  橡胶颗粒技术指标

    Table  2.   Technical index of rubber particles

    橡胶
    粒径/目
    平均粒
    度/μm
    筛网粒
    径/μm
    过筛率/
    (%)
    灰分/
    (%)
    丙酮抽
    出物/(%)
    拉伸强
    度/MPa
    拉断伸
    长率/(%)
    30562600≥90≤8≤8≥15≥500
    下载: 导出CSV

    表  3  试件配合比

    Table  3.   Concrete mix ratio /(kg/m3)

    橡胶掺量/(%)橡胶水泥粉煤灰碎石减水剂
    00.0790.01543004011406.8
    518.8750.51543004011407.5
    1037.7711.01543004011407.8
    1556.5671.51543004011408.2
    下载: 导出CSV

    表  4  立方体抗压强度和轴心抗压强度

    Table  4.   Cube compressive strength and axial compressive strength /MPa

    试件编号立方体抗压强度轴心抗压强度
    NC0.4553.639.4
    CRC30-545.335.2
    CRC30-1039.528.3
    CRC30-1531.825.9
    下载: 导出CSV

    表  5  疲劳寿命试验结果

    Table  5.   Fatigue life test results

    试件编号应力水平疲劳寿命/次
    NC0.450.611 657681 73669 585
    0.749 67437 05230 922
    0.824 94714 9028 959
    0.96 4224 7882 383
    CRC30-50.6112 279106 73893 788
    0.775 98268 29261 772
    0.846 52731 95320 583
    0.97 20948793 625
    CRC30-100.6178 128162 152146 691
    0.7107 76894 34289 433
    0.862 92753 28641 773
    0.914 23911 4348 481
    CRC30-150.6235 247214 231192 964
    0.7134 670128 493119 664
    0.897 28190 91883 185
    0.939 67436 70234 635
    下载: 导出CSV

    表  6  疲劳寿命分布参数

    Table  6.   Fatigue life distribution parameters

    编号$ S $${\hat {\mu} _\rm{s}}$${\hat {\sigma} _\rm{s}}$$ {R^2} $
    NC0.450.64.9410.1750.906
    0.74.5850.1570.964
    0.84.1740.3321.000
    0.93.6220.3390.896

    CRC30-5
    0.65.0170.0620.881
    0.74.8350.0670.999
    0.84.4950.2650.996
    0.93.7010.2250.988
    CRC30-100.65.2090.0630.999
    0.74.9860.0640.895
    0.84.7150.1340.976
    0.94.0460.1690.984
    CRC30-150.65.3290.0650.998
    0.75.1050.0390.969
    0.84.9560.0510.986
    0.94.5680.0440.985
    下载: 导出CSV

    表  7  疲劳寿命分布的Kolmogolov检验结果

    Table  7.   Results of Kolmogolov fit goodness test for fatigue life distribution

    编 号应力水平统计量$ {D_n} $观测值
    NC0.450.60.614
    0.70.591
    0.80.599
    0.90.591
    CRC30-50.60.591
    0.70.628
    0.80.595
    0.90.626
    CRC30-100.60.595
    0.70.618
    0.80.595
    0.90.595
    CRC30-150.60.599
    0.70.629
    0.80.595
    0.90.591
    下载: 导出CSV

    表  8  橡胶混凝土不同失效概率下的疲劳寿命

    Table  8.   Fatigue life of rubber concrete with different failure probabilities

    试件编号应力水平失效概率$ P $
    0.050.10.20.30.40.5
    NC0.450.644 80752 02857 32362 14578 86487 241
    0.721 23124 25926 45128 42835 16438 479
    0.84 2305 6146 7457 85912 34014 940
    0.91 1531 5391 8572 1713 4424 185
    CRC30-50.682 14586 59389 60792 197100 285103 923
    0.753 02156 14558 26960 10165 84768 444
    0.811 43514 32716 58418 73426 84131 259
    0.92 1432 5942 9373 2574 4185 028
    CRC30-100.6127 153134 217139 008143 130 156 017161 822
    0.775 98280 22583 10485 58293 32996 820
    0.831 15634 93737 63240 03648 05851 925
    0.95 8476 7547 4168 01710 09011 123
    CRC30-150.6166 813176 311182 759188 312205 697213 539
    0.7110 059113 744116 199118 286124 663127 467
    0.874 35377 66379 88881 79087 67190 289
    0.931 24532 44933 25533 94136 05036 983
    下载: 导出CSV
  • [1] 袁坚, 杜欢政. 生产者责任延伸制度ERP下废旧轮胎循环利用研究[J]. 再生资源与循环经济, 2020, 13(3): 22 − 24. doi: 10.3969/j.issn.1674-0912.2020.03.007

    YUAN Jian, DU Huanzheng. Research on recycling of waste tire under producer liability extension system ERP [J]. Renewable Resources and Circular Economy, 2020, 13(3): 22 − 24. (in Chinese) doi: 10.3969/j.issn.1674-0912.2020.03.007
    [2] 杨春峰, 杨敏. 废旧橡胶混凝土力学性能研究进展[J]. 混凝土, 2011(12): 98 − 100,109. doi: 10.3969/j.issn.1002-3550.2011.12.030

    YANG Chunfeng, YANG Min. Research progress in mechanical performance of waste rubber concrete [J]. Concrete, 2011(12): 98 − 100,109. (in Chinese) doi: 10.3969/j.issn.1002-3550.2011.12.030
    [3] FAKHRI M, FARSHAD S K. The effect of waste rubber particles and silica fume on themechanical properties of roller compacted concrete pavement [J]. Journal of Cleaner Production, 2016, 129: 521 − 530.
    [4] MATSUSHITA H, TOSKUMITSU Y. A study of on compressive fatigue strength of concrete considered survival probability [J]. Proceedings of the Japan Society of Civil Engineers, 1979(284): 127 − 138.
    [5] KIM J K, KIM Y Y. Experientnal study of the fatigue behavior of high strength concrete [J]. Cement and Concrete Research, 1996(26): 1513 − 1523.
    [6] GUO M M, FENG Z R, WANG X J. Effect of pre-crack on fatigue behaviors of concrete under tension and compression loading [J]. Materials Science Forum, 2015(873): 110 − 114.
    [7] MEDEIROS A, ZHANG X X, RUIZ G, et al. Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete [J]. International Journal of Fatigue, 2015(70): 342 − 350.
    [8] 吴佩刚, 赵光仪, 白利明. 高强混凝土抗压疲劳性能研究[J]. 土木工程学报, 1994, 27(3): 33 − 40.

    WU Peigang, ZHAO Guangyi, BAI Liming. Research on compressive fatigue performance of high strength concrete [J]. China Civil Engineering Journal, 1994, 27(3): 33 − 40. (in Chinese)
    [9] 姜德义, 刘文浩, 陈结, 等. 分级不连续循环载荷作用下混凝土的疲劳特性[J]. 东南大学学报(自然科学版), 2019, 49(4): 631 − 637.

    JIANG Deyi, LIU Wenhao, CHEN Jie, et al. Fatigue characteristics of concrete under graded discontinuous circular load [J]. Journal of Southeast University (Natural Science Edition), 2019, 49(4): 631 − 637. (in Chinese)
    [10] 冯文贤, 刘锋, 郑万虎. 橡胶混凝土疲劳性能的试验研究[J]. 建筑材料学报, 2012, 15(4): 469 − 473. doi: 10.3969/j.issn.1007-9629.2012.04.006

    FENG Wenxian, LIU Feng, ZHENG Wanhu. Test of fatigue performance of rubber concrete [J]. Journal of Building Materials, 2012, 15(4): 469 − 473. (in Chinese) doi: 10.3969/j.issn.1007-9629.2012.04.006
    [11] 罗素蓉, 承少坤, 肖建庄, 等. 纳米改性再生骨料混凝土单轴受压疲劳性能[J]. 工程力学, 2021, 38(10): 134 − 144. doi: 10.6052/j.issn.1000-4750.2020.09.0700

    LUO Shurong, CHENG Shaokun, XIAO Jianzhuang, et al. Fatigue behavior of nano-modified recycled aggregate concrete under uniaxial compression [J]. Engineering Mechanics, 2021, 38(10): 134 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0700
    [12] VISWANATH S, KUCHMA D A, LAFAVE J M. Experimental investigation of concrete fatigue in axial compression [J]. ACI Structural Journal, 2021, 118(1): 263 − 276.
    [13] 薛刚, 孙立所, 刘佳香, 等. 橡胶混凝土弯曲疲劳性能研究[J]. 长江科学院院报, 2021, 38(11): 149 − 156.

    XUE Gang, SUN Lizhu, LIU Jiaxiang, et al. Study on flexural fatigue performance of rubber concrete [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 149 − 156. (in Chinese)
    [14] 王瑞敏, 宋玉普, 赵国藩. 混凝土疲劳破坏的概率分析[J]. 大连理工大学学报, 1991, 31(3): 331 − 336.

    WANG Ruimin, SONG Yupu, ZHAO Guofan. Probability analysis of fatigue damage of concrete [J]. Journal of Dalian University of Technology, 1991, 31(3): 331 − 336. (in Chinese)
    [15] 李游, 李传习, 陈卓异, 等. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2): 111 − 123. doi: 10.6052/j.issn.1000-4750.2019.03.0114

    LI You, LI Chuanxi, CHEN Zhuoyi, et al. Fatigue reliability analysis of U-Ribs detail of steel box girder based on monitoring data [J]. Engineering Mechanics, 2020, 37(2): 111 − 123. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0114
    [16] 董毓利, 谢和平, 赵鹏. 受压混凝土理想弹塑性损伤本构模型[J]. 力学与实践, 1996, 18(6): 14 − 17.

    DONG Yuli, XIE Heping, ZHAO Peng. Ideal elasoplastic damage constitutive model of pressed concrete [J]. Mechanics and Practice, 1996, 18(6): 14 − 17. (in Chinese)
    [17] SPOONER D C, DOUGILL J W. A quantitative assessment of damage sustained in concrete during compressive loading [J]. Magazine of Concrete Research, 1975, 27(92): 151 − 160. doi: 10.1680/macr.1975.27.92.151
    [18] 赵东拂, 高海静, 刘禹辰, 等. 高温后高强混凝土受压疲劳性能研究[J]. 工程力学, 2018, 35(8): 201 − 207, 229. doi: 10.6052/j.issn.1000-4750.2017.04.0316

    ZHAO Dongfu, GAO Haijing, LIU Yuchen, et al. Study on pressure fatigue performance of high strength concrete after high temperature [J]. Engineering Mechanics, 2018, 35(8): 201 − 207, 229. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0316
    [19] 赵东拂, 高海静, 杨健辉. 混凝土双轴拉压、三轴拉压压变幅疲劳性能研究[J]. 工程力学, 2017, 34(8): 154 − 160. doi: 10.6052/j.issn.1000-4750.2016.04.0286

    ZHAO Dongfu, GAO Haijing, YANG Jianhui. Variable-amplitude fatigue properties of plain concrete under biaxial and tension-compresion and triaxial tension-compression-compression cyclic loading [J]. Engineering Mechanics, 2017, 34(8): 154 − 160. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.0286
    [20] MINER M A. Cumulative damage in fatigue [J]. Journal of Applied Mechanics, 1945, 12(3): 159 − 164.
    [21] 欧进萍, 林燕清. 混凝土高周疲劳损伤性能劣化试验研究[J]. 土木工程学报, 1999, 32(5): 15 − 22. doi: 10.3321/j.issn:1000-131X.1999.05.003

    OU Jinping, LIN Yanqing. Experimental study on high weekly fatigue damage degradation of concrete [J]. China Civil Engineering Journal, 1999, 32(5): 15 − 22. (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.05.003
    [22] MCCALL J T. Probability of fatigue failure of plainconcrete [J]. ACI Journal Proceedings, 1958, 55(8): 233 − 244.
    [23] 宋玉普. 混凝土结构的疲劳性能及设计原理 [M]. 北 京: 机械工业出版社, 2006.

    SONG Yupu. The fatigue performance and design principles of concrete structure [M]. Beijing: Machinery Industry Publishing House, 2006. (in Chinese)
    [24] 高镇同, 熊峻江. 疲劳可靠性 [M]. 北京: 北京航空航天大学出版社, 2000.

    GAO Zhentong, XIONG Junjiang. Fatigue reliability [M]. Beijing: Beijing University of Aerospace Press, 2000. (in Chinese)
    [25] SHI X P, FWA T F, TAN S A. Flexural fatigue strength of plain concrete [J]. ACI Mater, 1993: 2.
    [26] 过镇海, 时旭东. 钢筋混凝土原理和分析 [M]. 北京: 清华大学出版社, 2004.

    GUO Zhenhai, SHI Xudong. Principles and analysis of reinforced concrete [M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  58
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-09-22
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回