留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极上限分析的临水深基坑围护结构主动土压力计算

关振长 黄金峰 何亚军 宁茂权

关振长, 黄金峰, 何亚军, 宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算[J]. 工程力学, 2022, 39(11): 196-202, 256. doi: 10.6052/j.issn.1000-4750.2021.07.0527
引用本文: 关振长, 黄金峰, 何亚军, 宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算[J]. 工程力学, 2022, 39(11): 196-202, 256. doi: 10.6052/j.issn.1000-4750.2021.07.0527
GUAN Zhen-chang, HUANG Jin-feng, HE Ya-jun, Ning Mao-quan. THE ACTIVE EARTH PRESSURE CALCULATION FOR RETAINING STRUCTURE OF DEEP FOUNDATION PIT ADJACENT TO RIVER BASED ON UPPER-BOUND ANALYSIS[J]. Engineering Mechanics, 2022, 39(11): 196-202, 256. doi: 10.6052/j.issn.1000-4750.2021.07.0527
Citation: GUAN Zhen-chang, HUANG Jin-feng, HE Ya-jun, Ning Mao-quan. THE ACTIVE EARTH PRESSURE CALCULATION FOR RETAINING STRUCTURE OF DEEP FOUNDATION PIT ADJACENT TO RIVER BASED ON UPPER-BOUND ANALYSIS[J]. Engineering Mechanics, 2022, 39(11): 196-202, 256. doi: 10.6052/j.issn.1000-4750.2021.07.0527

基于极上限分析的临水深基坑围护结构主动土压力计算

doi: 10.6052/j.issn.1000-4750.2021.07.0527
基金项目: 国家自然科学基金项目(52278399);福建省自然科学基金项目(2021J01599)
详细信息
    作者简介:

    黄金峰(1998−),男,福建福州人,硕士生,主要从事岩土与隧道工程方面的研究(E-mail: hjfedu2021@163.com)

    何亚军(1997−),男,安徽六安人,硕士生,主要从事岩土与基坑工程方面的研究(E-mail: hehmzr@163.com)

    宁茂权(1972−),男,江西赣州人,高工,硕士,主要从事隧道与地下工程勘察设计及科研方面的研究(E-mail: 545883202qq@163.com)

    通讯作者:

    关振长(1980−),男,福建福州人,教授,博士,博导,主要从事岩土与隧道工程方面的科研和教学工作研究(E-mail: gaussto@hotmaiL.com)

  • 中图分类号: U451

THE ACTIVE EARTH PRESSURE CALCULATION FOR RETAINING STRUCTURE OF DEEP FOUNDATION PIT ADJACENT TO RIVER BASED ON UPPER-BOUND ANALYSIS

Funds: This work was supported by the Natural Science Foundation of China (51678155).
  • 摘要: 沿江临河修建的深基坑中,临水岸坡与基坑围护结构构成了有限宽度土体,其土压力计算方法与常规模式有较大不同。基于极上限分析法,运用改进多线段滑裂面生成技术,推导非均质临水深基坑围护结构主动土压力的上限解;并在均质土条件下,与传统直线或对数螺线滑裂面假定的计算结果进行对比验证。将上述计算方法运用于福州地铁5号线农林大学站基坑工程实例,认为围护结构主动土压力随水位的上升近似呈线性增大,随坡坑宽高比增大呈先快速增长后趋于稳定的趋势;当坡坑宽高比大于0.7时,主动土压力开始趋于稳定,说明滑裂面由模式Ⅰ(相交于坡面)过渡到模式Ⅱ(相交于坡顶)。进一步地,基于支撑刚度折减的数值模拟结果表明,临江侧土体滑裂面形态、围护结构主动土压力及合力作用点位置与理论计算结果较为吻合。上述研究成果可为临水深基坑围护结构的科学设计提供参考借鉴。
  • 图  1  非均质地层有限宽度土体中的多线段滑裂面

    Figure  1.  The multiple-segment slip surface of finite width soil in non-homogeneous ground

    图  2  滑裂面生成示意图(以OCP1为例)

    Figure  2.  The schematic diagram for the generation of slip surface

    图  3  临水坡体分块示意图

    Figure  3.  The schematic diagram for the block division of waterfront slope

    图  4  超载、水压力及主动土压力功率计算示意图

    Figure  4.  The schematic diagram for the power calculation of overload, water pressure and active earth pressure

    图  5  农林大学站基坑计算简图

    Figure  5.  The calculation diagram for the foundation pit of Agriculture and Forestry University Station

    图  6  主动土压力Ea随水位高差h0的变化

    Figure  6.  The variation of active earth pressure Ea with different water level h0

    图  7  主动土压力Ea随坡坑宽高比L/H的变化

    Figure  7.  The variation of active earth pressure Ea with different width-depth ratio L/H

    图  8  支撑刚度折减后的塑性剪应变云图

    Figure  8.  The contour of plastic shear strain after reduction of brace stiffness

    图  9  基坑围护结构土压力分布(数值模拟)

    Figure  9.  The earth pressure distribution along the retaining structure of foundation pit (from numerical simulation)

    表  1  主动土压力计算结果对比

    Table  1.   The comparison of active earth pressure calculated by deifferent methods

    抗剪强度参数主动土压力/kN
    黏聚力 c/kPa摩擦角 φ/(°)直线对数螺旋本文
    624247.17248.32243.77
    1020253.13252.00247.58
    1024212.08211.05208.25
    1028176.32175.74174.01
    1424177.15174.39172.87
    下载: 导出CSV

    表  2  地层物理力学参数表

    Table  2.   The physical and mechanical parameters of ground

    土层名称厚度
    /m
    重度
    /(kN/m3)
    黏聚力
    /kPa
    摩擦角
    /(°)
    粉质黏土4.119.9/18.523.6/27.314.5/14.0
    淤泥质土6.517.1/15.914.2/16.19.5/11.9
    残积砂质黏性土12.517.9/17.123.9/32.119.9/26.3
    全风化花岗岩12.121.0524.024.0
    下载: 导出CSV
  • [1] CHEN J X, JIN L Z. Study on non-limit active earth pressure of finite soil under T mode [J]. Earth and Environmental Science, 2020, 531(1): 2041 − 2052.
    [2] 王闫超, 晏鄂川, 陆文博, 等. 无黏性有限土体主动土压力解析解[J]. 岩土力学, 2016, 37(9): 2513 − 2520.

    WANG Yanchao, YAN Echuan, LU Wenbo, et, al. Analytical solution of active earth pressure for cohesionless soils [J]. Rock and Soil Mechanics, 2016, 37(9): 2513 − 2520. (in Chinese)
    [3] HU W D, LIU K X, ZHU X N, et al. Active earth pressure against rigid retaining walls for finite soils in sloping condition considering shear stress and soil arching effect [J]. Advances in Civil Engineering, 2020, 14(2): 1233 − 1239.
    [4] 高幸, 王维玉, 丁继辉. 基于嵌固稳定安全系数的悬臂结构优化设计[J]. 工程力学, 2020, 37(增刊 1): 62 − 71. doi: 10.6052/j.issn.1000-4750.2019.03.S005

    GAO Xing, WANG Weiyu, DING Jihui. Optimization design of cantilever structure based on embedded stability factor [J]. Engineering Mechanics, 2020, 37(Suppl 1): 62 − 71. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.S005
    [5] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 127 − 133. doi: 10.6052/j.issn.1000-4750.2017.01.0054

    YING Hongwei, WANG Xiaogang, ZHANG Jinhong. Analysis on heave-resistant stability considering the effect of excavation width [J]. Engineering Mechanics, 2018, 35(5): 127 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0054
    [6] 徐日庆, 徐叶斌, 程康, 等. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报, 2020, 42(2): 362 − 371.

    XU Riqing, XU Yebin, CHENG Kang, et al. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362 − 371. (in Chinese)
    [7] MIAO X Y, CHEN C F, WANG S Y. Upper bound of seismic active earth pressure on gravity retaining wall with limited backfill width [J]. Journal of Highway and Transportation Research and Development, 2018, 12(1): 36 − 43.
    [8] 李志浩, 肖世国. 地震条件下悬臂式挡墙主动土压力的极限分析方法[J]. 中国地质灾害与防治学报, 2020, 31(5): 79 − 87.

    LI Zhihao, XIAO Shiguo. Limit analysis method of active earth pressure on cantilever retaining wall subjected to earthquake [J]. The Chinese Journal of Geological Hazerd and Control, 2020, 31(5): 79 − 87. (in Chinese)
    [9] XU P, HATAMI K, JIANG G L. Seismic rotational stability analysis of reinforced soil retaining walls [J]. Computers and Geotechnics, 2020, 379(5): 118 − 127.
    [10] YANG X L, ZHANG S. Seismic Active Earth Pressure for Soils with Tension Cracks [J]. International Journal of Geomechanics, 2019, 19(6): 963 − 971.
    [11] HUANG D, LIU J. Upper-bound limit analysis on seismic rotational stability of retaining wall [J]. KSCE journal of civil engineering, 2016, 20: 2664 − 2669. doi: 10.1007/s12205-016-0471-z
    [12] LIU J L X. Upper-bound limit analysis on seismic rotational stability of waterfront retaining walls [J]. Marine Georesources & Geotechnology, 2021, 1(19): 32 − 41.
    [13] MOLLON G, ASCE M, ASCE F, et al. Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand [J]. Journal of Engineering Mechanics, 2010, 137(1): 8 − 21.
    [14] PAN Q J, DIAS D. Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach [J]. International Journal of Geomechanics, 2016, 16(3): 2201 − 2211.
    [15] SUN Z B, LI J F, PAN Q J, et al. Discrete kinematic mechanism for nonhomogeneous slopes and its application [J]. International Journal of Geomechanics, 2018, 18(12): 1462 − 1471.
    [16] SUN Z B, SHU X, DIAS D. Stability analysis for nonhomogeneous slopes subjected to water drawdown [J]. Journal of Central South University, 2019, 26(7): 1719 − 1734. doi: 10.1007/s11771-019-4128-1
    [17] QIN C B, CHIAN S C. Bearing capacity analysis of a saturated non-uniform soil slope with discretization-based kinematic analysis [J]. Computers and Geotechnics, 2018, 96: 246 − 257. doi: 10.1016/j.compgeo.2017.11.003
    [18] 江杰, 付臣志, 王顺苇, 等. 考虑实际分布形式的水平受荷桩桩周土抗力分析方法[J]. 工程力学, 2021, 38(11): 199 − 211. doi: 10.6052/j.issn.1000-4750.2020.11.0842

    JIANG Jie, FU Chenzhi, WANG Shunwei, et al. Analytical method of soil resietance around laterally loaded piles considering its actual distribution [J]. Engineering Mechanics, 2021, 38(11): 199 − 211. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0842
    [19] 《工程地质手册》编委会. 工程地质手册[M]. 第5版. 北京: 中国建筑工业出版社, 2018.

    《Engineering Geology Handbook》 Editorial Committee. Engineering Geology Handbook [M]. 5th ed. China Building Industry Press, 2018. (in Chinese)
    [20] 胡卫东, 曾律弦, 刘晓红, 等. 放坡状态有限土体刚性挡土墙主动土压力研究[J]. 水文地质工程地质, 2018, 45(6): 63 − 70.

    HU Weidong, ZENG Lyuxian, LIU Xiaohong, et al. Active earth pressures against rigid retaining walls for finite soil under the grading condition [J]. Hydrogeology & Engineering Geology, 2018, 45(6): 63 − 70. (in Chinese)
    [21] 宁茂权, 肖明清, 贺湘灵, 等. 沿江地铁车站基坑支护结构的设计与实侧研究[J]. 铁道标准设计, 2021, 65(8): 124 − 128.

    NING Maoquan, XIAO Mingqing, HE Xiangling, et al. The research on design and field measurement for the retaining structure of excavation of along-river metro station [J]. Railway Standard Design, 2021, 65(8): 124 − 128. (in Chinese)
    [22] 蔡建军, 谢璨, 李树枕, 等. 复杂条件下深基坑多层支护方法及数值模拟研究[J]. 工程力学, 2018, 35(2): 188 − 194. doi: 10.6052/j.issn.1000-4750.2016.10.0792

    CAI Jianjun, XIE Can, LI Shuchen, et al. Multi-layer supporting method and numerical simulation for deep foundation pit under complex condition [J]. Engineering Mechanics, 2018, 35(2): 188 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.10.0792
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  40
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-11
  • 录用日期:  2022-01-21
  • 修回日期:  2021-12-07
  • 网络出版日期:  2022-01-21
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回