THE ACTIVE EARTH PRESSURE CALCULATION FOR RETAINING STRUCTURE OF DEEP FOUNDATION PIT ADJACENT TO RIVER BASED ON UPPER-BOUND ANALYSIS
-
摘要: 沿江临河修建的深基坑中,临水岸坡与基坑围护结构构成了有限宽度土体,其土压力计算方法与常规模式有较大不同。基于极上限分析法,运用改进多线段滑裂面生成技术,推导非均质临水深基坑围护结构主动土压力的上限解;并在均质土条件下,与传统直线或对数螺线滑裂面假定的计算结果进行对比验证。将上述计算方法运用于福州地铁5号线农林大学站基坑工程实例,认为围护结构主动土压力随水位的上升近似呈线性增大,随坡坑宽高比增大呈先快速增长后趋于稳定的趋势;当坡坑宽高比大于0.7时,主动土压力开始趋于稳定,说明滑裂面由模式Ⅰ(相交于坡面)过渡到模式Ⅱ(相交于坡顶)。进一步地,基于支撑刚度折减的数值模拟结果表明,临江侧土体滑裂面形态、围护结构主动土压力及合力作用点位置与理论计算结果较为吻合。上述研究成果可为临水深基坑围护结构的科学设计提供参考借鉴。Abstract: In the deep foundation pit adjacent to river, the ground between bank slope and retaining structure is limited, as a result, the conventional models can not be used for the calculation of earth pressure. Based on the modified generation technology for multiple-segment slip surface, the active earth pressure of waterfront foundation pit in non-homogeneous ground was deduced through upper-bound analysis. On the homogeneous ground condition, the proposed method were validated throught a comparison with their counterparts of conventional linear or logarithmic fracture models. The proposed method was applied to an engineering instance (i.e. deep foundation pit of Agriculture and Forestry University Station in Fuzhou Metro Line 5), it is concluded that the active earth pressure of retaining structure increases approximately linearly with the rising of water level. On the other hand, the active earth pressure increases rapidly and then stabilize with the increase of width-height ratio of foundation pit. When the width-height ratio exceeds 0.7, the active earth pressure tends to stabilize, which implies that the slip surface transferred from mode Ⅰ (intersecting with slope) to mode ⅠI (intersecting with top). Furthermore, the numerical simulation results with bracing stiffness reduction show that the shape of sliding surface, the active earth pressure of retaining structure and the action point of resultant force are consistent with their counterparts of upper-bound analysis. These researches could provide some reference for the scientific design of retaining structures in the deep foundation pit adjacent to river.
-
表 1 主动土压力计算结果对比
Table 1. The comparison of active earth pressure calculated by deifferent methods
抗剪强度参数 主动土压力/kN 黏聚力 c/kPa 摩擦角 φ/(°) 直线 对数螺旋 本文 6 24 247.17 248.32 243.77 10 20 253.13 252.00 247.58 10 24 212.08 211.05 208.25 10 28 176.32 175.74 174.01 14 24 177.15 174.39 172.87 表 2 地层物理力学参数表
Table 2. The physical and mechanical parameters of ground
土层名称 厚度
/m重度
/(kN/m3)黏聚力
/kPa摩擦角
/(°)粉质黏土 4.1 19.9/18.5 23.6/27.3 14.5/14.0 淤泥质土 6.5 17.1/15.9 14.2/16.1 9.5/11.9 残积砂质黏性土 12.5 17.9/17.1 23.9/32.1 19.9/26.3 全风化花岗岩 12.1 21.05 24.0 24.0 -
[1] CHEN J X, JIN L Z. Study on non-limit active earth pressure of finite soil under T mode [J]. Earth and Environmental Science, 2020, 531(1): 2041 − 2052. [2] 王闫超, 晏鄂川, 陆文博, 等. 无黏性有限土体主动土压力解析解[J]. 岩土力学, 2016, 37(9): 2513 − 2520.WANG Yanchao, YAN Echuan, LU Wenbo, et, al. Analytical solution of active earth pressure for cohesionless soils [J]. Rock and Soil Mechanics, 2016, 37(9): 2513 − 2520. (in Chinese) [3] HU W D, LIU K X, ZHU X N, et al. Active earth pressure against rigid retaining walls for finite soils in sloping condition considering shear stress and soil arching effect [J]. Advances in Civil Engineering, 2020, 14(2): 1233 − 1239. [4] 高幸, 王维玉, 丁继辉. 基于嵌固稳定安全系数的悬臂结构优化设计[J]. 工程力学, 2020, 37(增刊 1): 62 − 71. doi: 10.6052/j.issn.1000-4750.2019.03.S005GAO Xing, WANG Weiyu, DING Jihui. Optimization design of cantilever structure based on embedded stability factor [J]. Engineering Mechanics, 2020, 37(Suppl 1): 62 − 71. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.S005 [5] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 127 − 133. doi: 10.6052/j.issn.1000-4750.2017.01.0054YING Hongwei, WANG Xiaogang, ZHANG Jinhong. Analysis on heave-resistant stability considering the effect of excavation width [J]. Engineering Mechanics, 2018, 35(5): 127 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0054 [6] 徐日庆, 徐叶斌, 程康, 等. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报, 2020, 42(2): 362 − 371.XU Riqing, XU Yebin, CHENG Kang, et al. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362 − 371. (in Chinese) [7] MIAO X Y, CHEN C F, WANG S Y. Upper bound of seismic active earth pressure on gravity retaining wall with limited backfill width [J]. Journal of Highway and Transportation Research and Development, 2018, 12(1): 36 − 43. [8] 李志浩, 肖世国. 地震条件下悬臂式挡墙主动土压力的极限分析方法[J]. 中国地质灾害与防治学报, 2020, 31(5): 79 − 87.LI Zhihao, XIAO Shiguo. Limit analysis method of active earth pressure on cantilever retaining wall subjected to earthquake [J]. The Chinese Journal of Geological Hazerd and Control, 2020, 31(5): 79 − 87. (in Chinese) [9] XU P, HATAMI K, JIANG G L. Seismic rotational stability analysis of reinforced soil retaining walls [J]. Computers and Geotechnics, 2020, 379(5): 118 − 127. [10] YANG X L, ZHANG S. Seismic Active Earth Pressure for Soils with Tension Cracks [J]. International Journal of Geomechanics, 2019, 19(6): 963 − 971. [11] HUANG D, LIU J. Upper-bound limit analysis on seismic rotational stability of retaining wall [J]. KSCE journal of civil engineering, 2016, 20: 2664 − 2669. doi: 10.1007/s12205-016-0471-z [12] LIU J L X. Upper-bound limit analysis on seismic rotational stability of waterfront retaining walls [J]. Marine Georesources & Geotechnology, 2021, 1(19): 32 − 41. [13] MOLLON G, ASCE M, ASCE F, et al. Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand [J]. Journal of Engineering Mechanics, 2010, 137(1): 8 − 21. [14] PAN Q J, DIAS D. Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach [J]. International Journal of Geomechanics, 2016, 16(3): 2201 − 2211. [15] SUN Z B, LI J F, PAN Q J, et al. Discrete kinematic mechanism for nonhomogeneous slopes and its application [J]. International Journal of Geomechanics, 2018, 18(12): 1462 − 1471. [16] SUN Z B, SHU X, DIAS D. Stability analysis for nonhomogeneous slopes subjected to water drawdown [J]. Journal of Central South University, 2019, 26(7): 1719 − 1734. doi: 10.1007/s11771-019-4128-1 [17] QIN C B, CHIAN S C. Bearing capacity analysis of a saturated non-uniform soil slope with discretization-based kinematic analysis [J]. Computers and Geotechnics, 2018, 96: 246 − 257. doi: 10.1016/j.compgeo.2017.11.003 [18] 江杰, 付臣志, 王顺苇, 等. 考虑实际分布形式的水平受荷桩桩周土抗力分析方法[J]. 工程力学, 2021, 38(11): 199 − 211. doi: 10.6052/j.issn.1000-4750.2020.11.0842JIANG Jie, FU Chenzhi, WANG Shunwei, et al. Analytical method of soil resietance around laterally loaded piles considering its actual distribution [J]. Engineering Mechanics, 2021, 38(11): 199 − 211. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0842 [19] 《工程地质手册》编委会. 工程地质手册[M]. 第5版. 北京: 中国建筑工业出版社, 2018.《Engineering Geology Handbook》 Editorial Committee. Engineering Geology Handbook [M]. 5th ed. China Building Industry Press, 2018. (in Chinese) [20] 胡卫东, 曾律弦, 刘晓红, 等. 放坡状态有限土体刚性挡土墙主动土压力研究[J]. 水文地质工程地质, 2018, 45(6): 63 − 70.HU Weidong, ZENG Lyuxian, LIU Xiaohong, et al. Active earth pressures against rigid retaining walls for finite soil under the grading condition [J]. Hydrogeology & Engineering Geology, 2018, 45(6): 63 − 70. (in Chinese) [21] 宁茂权, 肖明清, 贺湘灵, 等. 沿江地铁车站基坑支护结构的设计与实侧研究[J]. 铁道标准设计, 2021, 65(8): 124 − 128.NING Maoquan, XIAO Mingqing, HE Xiangling, et al. The research on design and field measurement for the retaining structure of excavation of along-river metro station [J]. Railway Standard Design, 2021, 65(8): 124 − 128. (in Chinese) [22] 蔡建军, 谢璨, 李树枕, 等. 复杂条件下深基坑多层支护方法及数值模拟研究[J]. 工程力学, 2018, 35(2): 188 − 194. doi: 10.6052/j.issn.1000-4750.2016.10.0792CAI Jianjun, XIE Can, LI Shuchen, et al. Multi-layer supporting method and numerical simulation for deep foundation pit under complex condition [J]. Engineering Mechanics, 2018, 35(2): 188 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.10.0792 -