留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非局部微分算子的近场动力学及固体材料应力数值模拟

李树忱 马鹏飞 王修伟 刘祥坤

李树忱, 马鹏飞, 王修伟, 刘祥坤. 基于非局部微分算子的近场动力学及固体材料应力数值模拟[J]. 工程力学, 2022, 39(11): 42-51. doi: 10.6052/j.issn.1000-4750.2021.07.0520
引用本文: 李树忱, 马鹏飞, 王修伟, 刘祥坤. 基于非局部微分算子的近场动力学及固体材料应力数值模拟[J]. 工程力学, 2022, 39(11): 42-51. doi: 10.6052/j.issn.1000-4750.2021.07.0520
LI Shu-chen, MA Peng-fei, WANG Xiu-wei, LIU Xiang-kun. PERIDYNAMICS AND NUMERICAL SIMULATION OF SOLID MATERIAL STRESS BASED ON NONLOCAL DIFFERENTIAL OPERATOR[J]. Engineering Mechanics, 2022, 39(11): 42-51. doi: 10.6052/j.issn.1000-4750.2021.07.0520
Citation: LI Shu-chen, MA Peng-fei, WANG Xiu-wei, LIU Xiang-kun. PERIDYNAMICS AND NUMERICAL SIMULATION OF SOLID MATERIAL STRESS BASED ON NONLOCAL DIFFERENTIAL OPERATOR[J]. Engineering Mechanics, 2022, 39(11): 42-51. doi: 10.6052/j.issn.1000-4750.2021.07.0520

基于非局部微分算子的近场动力学及固体材料应力数值模拟

doi: 10.6052/j.issn.1000-4750.2021.07.0520
基金项目: 国家自然科学基金项目(51879150,41831278)
详细信息
    作者简介:

    李树忱(1973−),男,黑龙江人,教授,博士,博导,主要从事深部岩体破坏机理研究(E-mail: shuchenli@sdu.edu.cn)

    王修伟(1997−),男,山东人,博士生,主要从事岩土工程数值模拟方面的研究(E-mail: wxwsdu@126.com)

    刘祥坤(1997−),男,山东人,硕士生,主要从事深部岩体破坏机理研究(E-mail: 15965610971@163.com)

    通讯作者:

    马鹏飞(1994−),男,山东人,博士生,主要从事岩土工程数值模拟方面的研究(E-mail: mapengfeisdu@163.com)

  • 中图分类号: O346.1+1

PERIDYNAMICS AND NUMERICAL SIMULATION OF SOLID MATERIAL STRESS BASED ON NONLOCAL DIFFERENTIAL OPERATOR

  • 摘要: 在经典近场动力学模型的基础上引入非局部微分算子求解理论,建立近场动力学微弹性应力分析模型。在近场动力学模型物质点处进行泰勒级数展开,利用正交非局部函数构建微分算子的数值积分方程并且根据矩阵正交性求解函数未知系数,最终由平衡方程等价性建立近场动力学应力求解模型。采用所提出的方法对固体材料变形破坏过程中的应力进行模拟,并将计算结果与理论解对比以验证方法有效性,同时对粒子离散间距、泰勒项数及权函数的数值收敛性进行分析。结果表明:该文提出的方法可以较准确的反映完整及非完整固体脆性材料在荷载作用下的应力分布,并且离散间距及权函数对数值收敛结果具有显著影响,可为使用近场动力学方法模拟变形破坏时提供新的应力分析思路,有着较为广泛的应用前景。
  • 图  1  物质点相互作用

    Figure  1.  Interaction of material points

    图  2  平板拉伸模型 /mm

    Figure  2.  Model of plate tension

    图  3  平板拉伸结果

    Figure  3.  Result of plate tension

    图  4  含圆孔平板模型 /mm

    Figure  4.  Model of plate with hole

    图  5  含圆孔平板计算结果

    Figure  5.  Calculation result of plate with hole

    图  6  含圆孔平板结果对比

    Figure  6.  Result comparison of plate with hole

    图  7  含裂隙平板模型 /mm

    Figure  7.  Model of plate with crack

    图  8  含裂隙平板计算结果

    Figure  8.  Calculation result of plate with crack

    图  9  局部结果对比

    Figure  9.  Comparison of local result

    图  10  裂纹渐进破坏

    Figure  10.  Crack progressive failure

    图  11  离散间距影响

    Figure  11.  Influence of particle discrete distance

    图  12  泰勒项数影响

    Figure  12.  Influence of Taylor term number

    图  13  权函数影响

    Figure  13.  Influence of weight function

  • [1] KANNO H, MORIGUCHI S. Development of a computational design optimization method for rockfall protection embankments [J]. Engineering Geology, 2020, 284: 105920.
    [2] 班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1 − 23. doi: 10.6052/j.issn.1000-4750.2020.04.ST01

    BAN Huiyong, MEI Yixiao, SHI Yongjiu. Research advances of stainless-clad bimetallic steel structures [J]. Engineering Mechanics, 2021, 38(6): 1 − 23. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.ST01
    [3] MA G, LI T, WANG Y, et al. Numerical simulations of nuclide migration in highly fractured rock masses by the unified network method [J]. Computers and Geotechnics, 2019, 111: 261 − 276. doi: 10.1016/j.compgeo.2019.03.024
    [4] 张开雨, 夏开文, 刘丰. 基于Voronoi多边形离散的DDA方法模拟岩石破坏[J]. 岩石力学与工程学报, 2021, 40(4): 725 − 738.

    ZHANG Kaiyu, XIA Kaiwen, LIU Feng. Simulation of rock failure by Voronoi-based discontinuous deformation analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 725 − 738. (in Chinese)
    [5] CAO W, WANG C. New primal-dual weak Galerkin finite element methods for convection-diffusion problems [J]. Applied Numerical Mathematics, 2021, 162: 171 − 191. doi: 10.1016/j.apnum.2020.12.012
    [6] BELHOCINE A, ABDULLAH O I. A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact [J]. Journal of Thermal Stresses, 2020, 43(3): 305 − 320. doi: 10.1080/01495739.2019.1683482
    [7] 王子珺, 赵伯明. 砂土统一本构模型研究及其三维数值实现[J]. 工程力学, 2021, 38(10): 181 − 187. doi: 10.6052/j.issn.1000-4750.2020.10.0728

    WANG Zijun, ZHAO Boming. The unified sand model and 3d numerical implementation [J]. Engineering Mechanics, 2021, 38(10): 181 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0728
    [8] THOENI K, GIACOMINI A, LAMBERT C, et al. A 3D discrete element modelling approach for rockfall analysis with drapery systems [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 107 − 119. doi: 10.1016/j.ijrmms.2014.02.008
    [9] 王璇, 徐明. 胶结型含可燃冰砂土剪切特性的离散元模拟[J]. 工程力学, 2021, 38(2): 44 − 51. doi: 10.6052/j.issn.1000-4750.2020.03.0174

    WANG Xuan, XU Ming. Discrete element simulation of the shear behavior of cemented methane sands [J]. Engineering Mechanics, 2021, 38(2): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0174
    [10] MIOTTI D, ZAMOLO R. A fully meshless approach to the numerical simulation of heat conduction problems over arbitrary 3D geometries [J]. Energies, 2021, 14(5): 14051351. doi: 10.3390/en14051351
    [11] SINGH I, MISHRA B, BHATTACHARYA S, et al. The numerical simulation of fatigue crack growth using extended finite element method [J]. International Journal of Fatigue, 2012, 36(1): 109 − 119. doi: 10.1016/j.ijfatigue.2011.08.010
    [12] HE M, YANG Q, LI N, et al. An extended finite element method for heat transfer with phase change in frozen soil [J]. Soil Mechanics and Foundation Engineering, 2021, 57(6): 497 − 505. doi: 10.1007/s11204-021-09698-z
    [13] DMITRIEV A, PSAKHIE S. Molecular-dynamics study of the initial stage of nanoscale deformation localization in the surface layers of a loaded solid [J]. Technical Physics Letters, 2004, 30(7): 578 − 579. doi: 10.1134/1.1783407
    [14] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of Mechanics Physics of Solids, 2000, 48(1): 175 − 209. doi: 10.1016/S0022-5096(99)00029-0
    [15] SILLING S A, EPTON M, WECKNER O. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151 − 184. doi: 10.1007/s10659-007-9125-1
    [16] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4): 448 − 459.

    HUANG Dan, ZHANG Qing, QIAO Pizhong, et al. A review on peridynamics method and its applications [J]. Advances in Mechanics, 2010, 40(4): 448 − 459. (in Chinese)
    [17] 秦洪远, 黄丹, 刘一鸣. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017, 34(12): 31 − 38. doi: 10.6052/j.issn.1000-4750.2016.08.0634

    QIN Hongyuan, HUANG Dan, LIU Yiming. An extended peridynamic approach for analysis of crack growth [J]. Engineering Mechanics, 2017, 34(12): 31 − 38. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0634
    [18] ZHOU X P, GU X B, WANG Y T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 241 − 254. doi: 10.1016/j.ijrmms.2015.09.006
    [19] 谷新保, 周小平. 裂纹扩展和连接过程的近场动力学数值模拟[J]. 岩土力学, 2017, 38(2): 610 − 616.

    GU Xinbao, ZHOU Xiaoping. Numerical simulation of propagation and coalescence of cracks using peridynamic [J]. Rock and Soil Mechanics, 2017, 38(2): 610 − 616. (in Chinese)
    [20] WANG Y T, ZHOU X P. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids [J]. International Journal of Solids and Structures, 2018, 134: 89 − 115. doi: 10.1016/j.ijsolstr.2017.10.022
    [21] WANG Y T, ZHOU X P. Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads [J]. Acta Geotechnica, 2019, 14: 1161 − 1193. doi: 10.1007/s11440-018-0709-7
    [22] ZHU Q Z, NI T. Peridynamic formulations enriched with bond rotation effects [J]. International Journal of Engineering Science, 2017, 121: 118 − 129. doi: 10.1016/j.ijengsci.2017.09.004
    [23] 王超, 熊伟鹏, 叶礼裕, 等. 冰桨接触过程中的遮蔽效应分析[J]. 华中科技大学学报, 2018, 46(6): 105 − 110.

    WANG Chao, XIONG Weipeng, YE Liyu, et al. Analysis of shadowing effect during propeller-ice contact process [J]. Journal of Huazhong University of Science and Technology, 2018, 46(6): 105 − 110. (in Chinese)
    [24] 黄小华, 李双, 金艳丽, 等. 冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析[J]. 振动与冲击, 2020, 39(20): 204 − 215.

    HUANG Xiaohua, LI Shuang, JIN Yanli, et al. Effect of Poisson’s ratio on the fracture of brittle materials under impact loading via peridynamics [J]. Journal of Vibration and Shock, 2020, 39(20): 204 − 215. (in Chinese)
    [25] HAN F, LUBINEAU G. A morphing approach to couple state-based peridynamics with classical continuum mechanics [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 301: 336 − 358. doi: 10.1016/j.cma.2015.12.024
    [26] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers and Structures, 2005, 83(17): 1526 − 1535.
    [27] LEHOUCQ R, SILLING S A. Force flux and the peridynamic stress tensor [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1566 − 1577. doi: 10.1016/j.jmps.2007.08.004
    [28] MADENCI E, BARUT A. Peridynamic differential operator and its applications [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 408 − 451. doi: 10.1016/j.cma.2016.02.028
  • 加载中
图(13)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  85
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 录用日期:  2021-12-10
  • 修回日期:  2021-12-01
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回