[1] |
KANNO H, MORIGUCHI S. Development of a computational design optimization method for rockfall protection embankments [J]. Engineering Geology, 2020, 284: 105920.
|
[2] |
班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1 − 23. doi: 10.6052/j.issn.1000-4750.2020.04.ST01BAN Huiyong, MEI Yixiao, SHI Yongjiu. Research advances of stainless-clad bimetallic steel structures [J]. Engineering Mechanics, 2021, 38(6): 1 − 23. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.ST01
|
[3] |
MA G, LI T, WANG Y, et al. Numerical simulations of nuclide migration in highly fractured rock masses by the unified network method [J]. Computers and Geotechnics, 2019, 111: 261 − 276. doi: 10.1016/j.compgeo.2019.03.024
|
[4] |
张开雨, 夏开文, 刘丰. 基于Voronoi多边形离散的DDA方法模拟岩石破坏[J]. 岩石力学与工程学报, 2021, 40(4): 725 − 738.ZHANG Kaiyu, XIA Kaiwen, LIU Feng. Simulation of rock failure by Voronoi-based discontinuous deformation analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 725 − 738. (in Chinese)
|
[5] |
CAO W, WANG C. New primal-dual weak Galerkin finite element methods for convection-diffusion problems [J]. Applied Numerical Mathematics, 2021, 162: 171 − 191. doi: 10.1016/j.apnum.2020.12.012
|
[6] |
BELHOCINE A, ABDULLAH O I. A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact [J]. Journal of Thermal Stresses, 2020, 43(3): 305 − 320. doi: 10.1080/01495739.2019.1683482
|
[7] |
王子珺, 赵伯明. 砂土统一本构模型研究及其三维数值实现[J]. 工程力学, 2021, 38(10): 181 − 187. doi: 10.6052/j.issn.1000-4750.2020.10.0728WANG Zijun, ZHAO Boming. The unified sand model and 3d numerical implementation [J]. Engineering Mechanics, 2021, 38(10): 181 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0728
|
[8] |
THOENI K, GIACOMINI A, LAMBERT C, et al. A 3D discrete element modelling approach for rockfall analysis with drapery systems [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 107 − 119. doi: 10.1016/j.ijrmms.2014.02.008
|
[9] |
王璇, 徐明. 胶结型含可燃冰砂土剪切特性的离散元模拟[J]. 工程力学, 2021, 38(2): 44 − 51. doi: 10.6052/j.issn.1000-4750.2020.03.0174WANG Xuan, XU Ming. Discrete element simulation of the shear behavior of cemented methane sands [J]. Engineering Mechanics, 2021, 38(2): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0174
|
[10] |
MIOTTI D, ZAMOLO R. A fully meshless approach to the numerical simulation of heat conduction problems over arbitrary 3D geometries [J]. Energies, 2021, 14(5): 14051351. doi: 10.3390/en14051351
|
[11] |
SINGH I, MISHRA B, BHATTACHARYA S, et al. The numerical simulation of fatigue crack growth using extended finite element method [J]. International Journal of Fatigue, 2012, 36(1): 109 − 119. doi: 10.1016/j.ijfatigue.2011.08.010
|
[12] |
HE M, YANG Q, LI N, et al. An extended finite element method for heat transfer with phase change in frozen soil [J]. Soil Mechanics and Foundation Engineering, 2021, 57(6): 497 − 505. doi: 10.1007/s11204-021-09698-z
|
[13] |
DMITRIEV A, PSAKHIE S. Molecular-dynamics study of the initial stage of nanoscale deformation localization in the surface layers of a loaded solid [J]. Technical Physics Letters, 2004, 30(7): 578 − 579. doi: 10.1134/1.1783407
|
[14] |
SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of Mechanics Physics of Solids, 2000, 48(1): 175 − 209. doi: 10.1016/S0022-5096(99)00029-0
|
[15] |
SILLING S A, EPTON M, WECKNER O. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151 − 184. doi: 10.1007/s10659-007-9125-1
|
[16] |
黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4): 448 − 459.HUANG Dan, ZHANG Qing, QIAO Pizhong, et al. A review on peridynamics method and its applications [J]. Advances in Mechanics, 2010, 40(4): 448 − 459. (in Chinese)
|
[17] |
秦洪远, 黄丹, 刘一鸣. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017, 34(12): 31 − 38. doi: 10.6052/j.issn.1000-4750.2016.08.0634QIN Hongyuan, HUANG Dan, LIU Yiming. An extended peridynamic approach for analysis of crack growth [J]. Engineering Mechanics, 2017, 34(12): 31 − 38. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0634
|
[18] |
ZHOU X P, GU X B, WANG Y T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 241 − 254. doi: 10.1016/j.ijrmms.2015.09.006
|
[19] |
谷新保, 周小平. 裂纹扩展和连接过程的近场动力学数值模拟[J]. 岩土力学, 2017, 38(2): 610 − 616.GU Xinbao, ZHOU Xiaoping. Numerical simulation of propagation and coalescence of cracks using peridynamic [J]. Rock and Soil Mechanics, 2017, 38(2): 610 − 616. (in Chinese)
|
[20] |
WANG Y T, ZHOU X P. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids [J]. International Journal of Solids and Structures, 2018, 134: 89 − 115. doi: 10.1016/j.ijsolstr.2017.10.022
|
[21] |
WANG Y T, ZHOU X P. Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads [J]. Acta Geotechnica, 2019, 14: 1161 − 1193. doi: 10.1007/s11440-018-0709-7
|
[22] |
ZHU Q Z, NI T. Peridynamic formulations enriched with bond rotation effects [J]. International Journal of Engineering Science, 2017, 121: 118 − 129. doi: 10.1016/j.ijengsci.2017.09.004
|
[23] |
王超, 熊伟鹏, 叶礼裕, 等. 冰桨接触过程中的遮蔽效应分析[J]. 华中科技大学学报, 2018, 46(6): 105 − 110.WANG Chao, XIONG Weipeng, YE Liyu, et al. Analysis of shadowing effect during propeller-ice contact process [J]. Journal of Huazhong University of Science and Technology, 2018, 46(6): 105 − 110. (in Chinese)
|
[24] |
黄小华, 李双, 金艳丽, 等. 冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析[J]. 振动与冲击, 2020, 39(20): 204 − 215.HUANG Xiaohua, LI Shuang, JIN Yanli, et al. Effect of Poisson’s ratio on the fracture of brittle materials under impact loading via peridynamics [J]. Journal of Vibration and Shock, 2020, 39(20): 204 − 215. (in Chinese)
|
[25] |
HAN F, LUBINEAU G. A morphing approach to couple state-based peridynamics with classical continuum mechanics [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 301: 336 − 358. doi: 10.1016/j.cma.2015.12.024
|
[26] |
SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers and Structures, 2005, 83(17): 1526 − 1535.
|
[27] |
LEHOUCQ R, SILLING S A. Force flux and the peridynamic stress tensor [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1566 − 1577. doi: 10.1016/j.jmps.2007.08.004
|
[28] |
MADENCI E, BARUT A. Peridynamic differential operator and its applications [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 408 − 451. doi: 10.1016/j.cma.2016.02.028
|