留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强中空夹层钢管混凝土柱的耐火性能试验研究

熊明祥 胡琪东 刘博元 林靖

熊明祥, 胡琪东, 刘博元, 林靖. 高强中空夹层钢管混凝土柱的耐火性能试验研究[J]. 工程力学, 2022, 39(11): 177-185. doi: 10.6052/j.issn.1000-4750.2021.07.0515
引用本文: 熊明祥, 胡琪东, 刘博元, 林靖. 高强中空夹层钢管混凝土柱的耐火性能试验研究[J]. 工程力学, 2022, 39(11): 177-185. doi: 10.6052/j.issn.1000-4750.2021.07.0515
XIONG Ming-xiang, HU Qi-dong, LIU Bo-yuan, LIN Jing. EXPERIMENTAL STUDY ON FIRE BEHAVIOR OF HIGH STRENGTH DOUBLE-SKIN CONCRETE-FILLED STEEL TUBULAR COLUMNS[J]. Engineering Mechanics, 2022, 39(11): 177-185. doi: 10.6052/j.issn.1000-4750.2021.07.0515
Citation: XIONG Ming-xiang, HU Qi-dong, LIU Bo-yuan, LIN Jing. EXPERIMENTAL STUDY ON FIRE BEHAVIOR OF HIGH STRENGTH DOUBLE-SKIN CONCRETE-FILLED STEEL TUBULAR COLUMNS[J]. Engineering Mechanics, 2022, 39(11): 177-185. doi: 10.6052/j.issn.1000-4750.2021.07.0515

高强中空夹层钢管混凝土柱的耐火性能试验研究

doi: 10.6052/j.issn.1000-4750.2021.07.0515
基金项目: 广东省自然科学基金项目(2021A1515012390);广州市科技计划项目(20210201407)
详细信息
    作者简介:

    胡琪东(1997−),男,湖南常德人,硕士生,主要从事组合结构相关研究(E-mail: huqidong886@outlook.com)

    刘博元(2000−),女,吉林吉林人,福霖班本科生,参与组合结构相关研究(E-mail: 16643420642@163.com)

    林 靖(2000−),男,广东中山人,福霖班本科生,参与组合结构相关研究(E-mail: 2504908007@qq.com)

    通讯作者:

    熊明祥(1980−),男,湖南常德人,副教授,工学博士,主要从事组合结构受力性能与设计方法研究 (E-mail: cvexmx@gzhu.edu.cn)

  • 中图分类号: TU398+.9

EXPERIMENTAL STUDY ON FIRE BEHAVIOR OF HIGH STRENGTH DOUBLE-SKIN CONCRETE-FILLED STEEL TUBULAR COLUMNS

  • 摘要: 针对应用高强钢与超高强混凝土的中空夹层钢管混凝土柱,开展了轴心受压柱的标准耐火试验,得到了不同截面形状、边界条件、涂料厚度、荷载比条件下该柱的耐火极限,提出了表征柱耐火性能的延性指标,探讨了高强柱与普通柱耐火性能的差异。试验结果表明:高强中空夹层钢管混凝土柱的受火时间-位移响应与普通柱相似,受火前期膨胀而后期压缩变形进一步增大达到耐火极限。参数分析表明:相同条件下,应用高强钢的中空夹层柱其耐火极限低于应用普通钢的中空夹层柱,而应用超高强混凝土的中空夹层柱其耐火极限则高于应用普通或高强混凝土的中空夹层柱。此外,该文分别基于欧洲规范4中轴心受压柱和压弯构件的常温承载力计算模型,运用材料高温力学参数,计算了该柱高温屈曲承载力与耐火极限,计算结果与试验结果吻合较好。
  • 图  1  中空夹层钢管混凝土柱试件尺寸 /mm

    Figure  1.  Dimensions of double-skin CFST column specimens

    图  2  标准耐火试验加载装置

    Figure  2.  Setup for standard fire test

    图  3  耐火试件整体破坏形态

    Figure  3.  Global failure modes of specimens after fire

    图  4  内钢管破坏形态

    Figure  4.  Failure modes of inner steel tubes after fire

    图  5  耐火试件截面破坏形态

    Figure  5.  Cross-sectional failure modes of specimens after fire

    图  6  截面测点处受火时间-温度曲线

    Figure  6.  Curves of time - temperature at measuring points of cross section

    图  7  柱顶位移-受火时间试验曲线

    Figure  7.  Test time-vertical displacement curves

    图  8  典型柱顶位移-受火时间关系示意图

    Figure  8.  Diagram of time-vertical displacement

    图  9  柱高温屈曲计算长度

    Figure  9.  Temperature-dependent buckling length

    图  10  超高强混凝土的高温应力-应变曲线

    Figure  10.  Stress-strain curves of UHSC at elevated temperatures

    图  11  高强钢的高温应力-应变曲线

    Figure  11.  Stress-strain curves of HSS at elevated temperatures

    图  12  简化的柱截面轴力-弯矩相关曲线

    Figure  12.  Simplified N-M interactive curve of column

    图  13  试验与计算耐火极限的比较

    Figure  13.  Comparisons between test and predicted fire resistance

    图  14  高温屈曲承载力随温度变化的曲线

    Figure  14.  Curves of buckling resistance versus time

    图  15  柱失效时的M-N相关曲线

    Figure  15.  M-N interactive curves at column failure

    图  16  钢与混凝土强度对耐火极限的影响

    Figure  16.  Effects of steel and concrete strength on fire resistance

    表  1  构件主要参数与试验/计算结果

    Table  1.   Specimen details and test/calculation results

    试件编号外/内钢管尺寸外/内钢管力学性能混凝土强度fc /MPa涂料厚度tf /mm边界条件柱顶荷载 /kN荷载比
    D × t /(mm×mm)fy/MPa × Es/GPa
    CNS1*219.1×16/114.3×6.3432×203/468×1831650F-F24280.341
    CNS2_NSC219.1×16/114.3×6.3432×203/468×183408.2P-P21930.626
    CNS2_HSC219.1×16/114.3×6.3432×203/468×183908.2P-P24220.626
    CNS2*219.1×16/114.3×6.3432×203/468×1831638.2P-P27360.626
    CNS2_HSS219.1×16/114.3×6.3785×211/825×2021638.2P-P32980.626
    SHS1*200×12/100×8785×211/825×2021700F-F37150.350
    SHS2_NSC200×12/100×8785×211/825×202409.2P-P24130.522
    SHS2_HSC200×12/100×8785×211/825×202909.2P-P26000.522
    SHS2*200×12/100×8785×211/825×2021729.2P-P29420.522
    SHS2_NSS200×12/100×8432×203/468×1831729.2P-P24520.522
    注:“*”表示试验构件,其余为参数分析构件;D分别为圆钢管的外直径或方钢管的外边长,t为钢管壁厚;F-F、P-P分别代表两端固结、两端铰接;荷载比为柱顶荷载与常温承载力的比值,该常温承载力由3.3.2节中方法求得。
    下载: 导出CSV

    表  2  聚丙烯纤维基本参数

    Table  2.   Basic properties of polypropylene fiber

    类型直径 /mm长度 /mm密度 /(kg/m3)强度 /MPa吸水性
    单丝0.03±0.00513910±0.01%≥450MPa
    下载: 导出CSV
  • [1] 李国强, 王彦博, 陈素文, 等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1): 1 − 13.

    LI Guoqiang, WANG Yanbo, CHEN Suwen, et al. State-of-the-art on research of high strength structural steels and key issues of using high strength steels in seismic structures [J]. Journal of Building Structures, 2013, 34(1): 1 − 13. (in Chinese)
    [2] 韦建刚, 周俊, 罗霞, 等. 高强钢管超高强混凝土柱抗震性能试验研究[J]. 工程力学, 2021, 38(7): 30 − 40, 51. doi: 10.6052/j.issn.1000-4750.2020.06.0414

    WEI Jiangang, ZHOU Jun, LUO Xia, et al. Experimental study on quasi-static behavior of ultra-high strength concrete filled high strength steel tubular columns [J]. Eningeering Mechanics, 2021, 38(7): 30 − 40, 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0414
    [3] 黄永辉, 刘爱荣, 傅继阳, 等. 高强钢管高强混凝土徐变特性试验研究[J]. 工程力学, 2021, 38(8): 204 − 212, 256. doi: 10.6052/j.issn.1000-4750.2020.11.0805

    HUANG Yonghui, LIU Airong, FU Jiyang, et al. Experimental study on the creep characteristics of high-strength concrete filled high-strength steel tube [J]. Engineering Mechanics, 2021, 38(8): 204 − 212, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0805
    [4] XIONG M X, LIEW J Y R. Fire resistance of high-strength steel tubes infilled with ultra-high-strength concrete under compression [J]. Journal of Constructional Steel Research, 2021, 176: 106410.
    [5] XIONG M X, LIEW J Y R. Experimental study to differentiate mechanical behaviours of TMCP and QT high strength steel at elevated temperatures [J]. Construction and Building Materials, 2020, 242: 118105.
    [6] KODUR V K R. Solutions for enhancing the fire endurance of HSS columns filled with high strength concrete [J]. Engineering Journal, 2006, 43: 1 − 7.
    [7] ROMERO M L, ESPINOS A, PORTOLES J M, et al. Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire [J]. Engineering Structures, 2015, 99: 536 − 545.
    [8] 张哲, 王柯, 张猛. 高强钢管混凝土柱的抗火性能研究[J]. 建筑钢结构进展, 2018, 20(4): 85 − 96.

    ZHANG Zhe, WANG Ke, ZHANG Meng. Fire resistance of concrete-filled high strength steel tubular columns [J]. Progress in Steel Building Structures, 2018, 20(4): 85 − 96. (in Chinese)
    [9] XIONG M X, LIEW J Y R. Buckling behavior of circular steel tubes infilled with C170/185 ultra-high strength concrete under fire [J]. Engineering Structures, 2020, 212: 110523.
    [10] LOPES R F R, RODRIGUES J P C. Behaviour of restrained concrete filled square double-skin and double-tube hollow columns in case of fire [J]. Engineering Structures, 2020, 216: 110736.
    [11] ESPINOS A, ROMERO M L, LAM D. Fire performance of innovative steel-concrete composite columns using high strength steels [J]. Thin-Walled Structures, 2016, 106: 113 − 128.
    [12] ISO 834-1. Fire-resistance tests-elements of building construction Part1: General requirements [S]. Geneva: International Standard ISO 834, 1999.
    [13] Eurocode 3: EN 1993-1-2. Design of steel structures - Part 1-2: General rules-structural fire design [S]. Brussels: European Committee for Standardization, 2005.
    [14] 王勇, 吴加超, 李凌志, 等. 不同跨受火混凝土连续双向板火灾试验及数值分析[J]. 工程力学, 2020, 37(8): 55 − 72. doi: 10.6052/j.issn.1000-4750.2019.08.0440

    WANG Yong, WU Jiachao, LI Lingzhi, et al. Experimental study and numerical analysis on the behavior of reinforced concrete continuous two-way slabs subjected to different span fires [J]. Engineering Mechanics, 2020, 37(8): 55 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0440
    [15] XIONG M X, WANG Y H, LIEW J Y R. Evaluation on thermal behavior of concrete filled steel tubular columns based on modified finite difference method [J]. Advances in Structural Engineering, 2016, 19(5): 746 − 761.
    [16] KODUR V, KHALIQ W. Effect of temperature on thermal properties of different types of high-strength concrete [J]. Journal of Materials in Civil Engineering, 2011, 23(6): 793 − 801.
    [17] CHOI I R, CHUNG K S, KIM D H. Thermal and mechanical properties of high strength structural steel HSA800 at elevated temperatures [J]. Materials and Design, 2014, 63: 544 − 551.
    [18] Eurocode 2: EN 1992-1-2. Design of concrete structures - Part 1-2: General rules - Structural fire design [S]. Brussels: European Committee for Standardization, 2004.
    [19] XIONG M X, YAN J B. Buckling length determination of concrete filled steel tubular column under axial compression in standard fire test [J]. Materials and Structures, 2016, 49(4): 1201 − 1212.
    [20] Eurocode 4: EN 1994-1-2. Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design [S]. Brussels: European Committee for Standardization, 2005.
    [21] Eurocode 4: EN 1994-1-1. Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  85
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-10-11
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回