EXPERIMENTAL STUDY ON FIRE BEHAVIOR OF HIGH STRENGTH DOUBLE-SKIN CONCRETE-FILLED STEEL TUBULAR COLUMNS
-
摘要: 针对应用高强钢与超高强混凝土的中空夹层钢管混凝土柱,开展了轴心受压柱的标准耐火试验,得到了不同截面形状、边界条件、涂料厚度、荷载比条件下该柱的耐火极限,提出了表征柱耐火性能的延性指标,探讨了高强柱与普通柱耐火性能的差异。试验结果表明:高强中空夹层钢管混凝土柱的受火时间-位移响应与普通柱相似,受火前期膨胀而后期压缩变形进一步增大达到耐火极限。参数分析表明:相同条件下,应用高强钢的中空夹层柱其耐火极限低于应用普通钢的中空夹层柱,而应用超高强混凝土的中空夹层柱其耐火极限则高于应用普通或高强混凝土的中空夹层柱。此外,该文分别基于欧洲规范4中轴心受压柱和压弯构件的常温承载力计算模型,运用材料高温力学参数,计算了该柱高温屈曲承载力与耐火极限,计算结果与试验结果吻合较好。
-
关键词:
- 高强钢 /
- 超高强混凝土 /
- 中空夹层钢管混凝土柱 /
- 温度场 /
- 耐火极限
Abstract: Standard fire tests on double-skin concrete-filled steel tubular (CFST) columns using high strength steel (HSS) and ultra-high strength concrete (UHSC) were conducted. The effects of section shape, boundary condition, thickness of fire protection, load ratio on the fire performance were investigated, ductility index was proposed and the differences between normal- and high strength double-skin CFST columns were discussed. Test results show that the time-displacement response of such high strength columns is very similar to their counterparts with normal strength materials. The parametric analysis indicates that, with the other conditions remaining the same, the fire resistance time of columns using HSS is shorter than their counterparts with normal strength steel (NSS), whereas the fire resistance time of such columns with UHSC is longer than those with normal- or high strength concrete (NSC or HSC). Besides, the high temperature-dependent buckling resistance and fire resistance time were calculated based on the ambient temperature calculation modes of axially and eccentrically loaded columns in Eurocode 4 and using the temperature-dependent material properties of UHSC and HSS, and the predicted results agree reasonably with the test values. -
表 1 构件主要参数与试验/计算结果
Table 1. Specimen details and test/calculation results
试件编号 外/内钢管尺寸 外/内钢管力学性能 混凝土强度fc /MPa 涂料厚度tf /mm 边界条件 柱顶荷载 /kN 荷载比 D × t /(mm×mm) fy/MPa × Es/GPa CNS1* 219.1×16/114.3×6.3 432×203/468×183 165 0 F-F 2428 0.341 CNS2_NSC 219.1×16/114.3×6.3 432×203/468×183 40 8.2 P-P 2193 0.626 CNS2_HSC 219.1×16/114.3×6.3 432×203/468×183 90 8.2 P-P 2422 0.626 CNS2* 219.1×16/114.3×6.3 432×203/468×183 163 8.2 P-P 2736 0.626 CNS2_HSS 219.1×16/114.3×6.3 785×211/825×202 163 8.2 P-P 3298 0.626 SHS1* 200×12/100×8 785×211/825×202 170 0 F-F 3715 0.350 SHS2_NSC 200×12/100×8 785×211/825×202 40 9.2 P-P 2413 0.522 SHS2_HSC 200×12/100×8 785×211/825×202 90 9.2 P-P 2600 0.522 SHS2* 200×12/100×8 785×211/825×202 172 9.2 P-P 2942 0.522 SHS2_NSS 200×12/100×8 432×203/468×183 172 9.2 P-P 2452 0.522 注:“*”表示试验构件,其余为参数分析构件;D分别为圆钢管的外直径或方钢管的外边长,t为钢管壁厚;F-F、P-P分别代表两端固结、两端铰接;荷载比为柱顶荷载与常温承载力的比值,该常温承载力由3.3.2节中方法求得。 表 2 聚丙烯纤维基本参数
Table 2. Basic properties of polypropylene fiber
类型 直径 /mm 长度 /mm 密度 /(kg/m3) 强度 /MPa 吸水性 单丝 0.03±0.005 13 910±0.01% ≥450MPa 否 -
[1] 李国强, 王彦博, 陈素文, 等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1): 1 − 13.LI Guoqiang, WANG Yanbo, CHEN Suwen, et al. State-of-the-art on research of high strength structural steels and key issues of using high strength steels in seismic structures [J]. Journal of Building Structures, 2013, 34(1): 1 − 13. (in Chinese) [2] 韦建刚, 周俊, 罗霞, 等. 高强钢管超高强混凝土柱抗震性能试验研究[J]. 工程力学, 2021, 38(7): 30 − 40, 51. doi: 10.6052/j.issn.1000-4750.2020.06.0414WEI Jiangang, ZHOU Jun, LUO Xia, et al. Experimental study on quasi-static behavior of ultra-high strength concrete filled high strength steel tubular columns [J]. Eningeering Mechanics, 2021, 38(7): 30 − 40, 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0414 [3] 黄永辉, 刘爱荣, 傅继阳, 等. 高强钢管高强混凝土徐变特性试验研究[J]. 工程力学, 2021, 38(8): 204 − 212, 256. doi: 10.6052/j.issn.1000-4750.2020.11.0805HUANG Yonghui, LIU Airong, FU Jiyang, et al. Experimental study on the creep characteristics of high-strength concrete filled high-strength steel tube [J]. Engineering Mechanics, 2021, 38(8): 204 − 212, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0805 [4] XIONG M X, LIEW J Y R. Fire resistance of high-strength steel tubes infilled with ultra-high-strength concrete under compression [J]. Journal of Constructional Steel Research, 2021, 176: 106410. [5] XIONG M X, LIEW J Y R. Experimental study to differentiate mechanical behaviours of TMCP and QT high strength steel at elevated temperatures [J]. Construction and Building Materials, 2020, 242: 118105. [6] KODUR V K R. Solutions for enhancing the fire endurance of HSS columns filled with high strength concrete [J]. Engineering Journal, 2006, 43: 1 − 7. [7] ROMERO M L, ESPINOS A, PORTOLES J M, et al. Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire [J]. Engineering Structures, 2015, 99: 536 − 545. [8] 张哲, 王柯, 张猛. 高强钢管混凝土柱的抗火性能研究[J]. 建筑钢结构进展, 2018, 20(4): 85 − 96.ZHANG Zhe, WANG Ke, ZHANG Meng. Fire resistance of concrete-filled high strength steel tubular columns [J]. Progress in Steel Building Structures, 2018, 20(4): 85 − 96. (in Chinese) [9] XIONG M X, LIEW J Y R. Buckling behavior of circular steel tubes infilled with C170/185 ultra-high strength concrete under fire [J]. Engineering Structures, 2020, 212: 110523. [10] LOPES R F R, RODRIGUES J P C. Behaviour of restrained concrete filled square double-skin and double-tube hollow columns in case of fire [J]. Engineering Structures, 2020, 216: 110736. [11] ESPINOS A, ROMERO M L, LAM D. Fire performance of innovative steel-concrete composite columns using high strength steels [J]. Thin-Walled Structures, 2016, 106: 113 − 128. [12] ISO 834-1. Fire-resistance tests-elements of building construction Part1: General requirements [S]. Geneva: International Standard ISO 834, 1999. [13] Eurocode 3: EN 1993-1-2. Design of steel structures - Part 1-2: General rules-structural fire design [S]. Brussels: European Committee for Standardization, 2005. [14] 王勇, 吴加超, 李凌志, 等. 不同跨受火混凝土连续双向板火灾试验及数值分析[J]. 工程力学, 2020, 37(8): 55 − 72. doi: 10.6052/j.issn.1000-4750.2019.08.0440WANG Yong, WU Jiachao, LI Lingzhi, et al. Experimental study and numerical analysis on the behavior of reinforced concrete continuous two-way slabs subjected to different span fires [J]. Engineering Mechanics, 2020, 37(8): 55 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0440 [15] XIONG M X, WANG Y H, LIEW J Y R. Evaluation on thermal behavior of concrete filled steel tubular columns based on modified finite difference method [J]. Advances in Structural Engineering, 2016, 19(5): 746 − 761. [16] KODUR V, KHALIQ W. Effect of temperature on thermal properties of different types of high-strength concrete [J]. Journal of Materials in Civil Engineering, 2011, 23(6): 793 − 801. [17] CHOI I R, CHUNG K S, KIM D H. Thermal and mechanical properties of high strength structural steel HSA800 at elevated temperatures [J]. Materials and Design, 2014, 63: 544 − 551. [18] Eurocode 2: EN 1992-1-2. Design of concrete structures - Part 1-2: General rules - Structural fire design [S]. Brussels: European Committee for Standardization, 2004. [19] XIONG M X, YAN J B. Buckling length determination of concrete filled steel tubular column under axial compression in standard fire test [J]. Materials and Structures, 2016, 49(4): 1201 − 1212. [20] Eurocode 4: EN 1994-1-2. Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design [S]. Brussels: European Committee for Standardization, 2005. [21] Eurocode 4: EN 1994-1-1. Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004. -