STRONG NONLINEAR PRIMARY RESONANCE OF ROTATING FUNCTIONALLY GRADED CIRCULAR PLATES UNDER HARMONIC FORCE
-
摘要: 功能梯度材料作为一种新型材料,具有良好的力学性能,近年来被广泛关注和应用。该文针对金属-陶瓷功能梯度圆板,考虑周边夹支边界约束条件,选取多项式形式的振型函数,利用伽辽金法,推得旋转运动状态和热效应作用下系统的纵横耦合非线性振动方程,求得由旋转及密度差引起的静挠度项。用改进多尺度法求解方程,得到强非线性系统的频幅响应方程和解析解。通过算例,给出功能梯度圆板的幅频曲线、幅值-激励力曲线、幅值-温度曲线,分析了不同物理量对结构共振幅值的影响规律,并且比较了解析解和数值解,两者结果较为吻合。Abstract: As a new type of material, functionally graded material (FGM) has attract wide attention and application in recent years due to its good mechanical properties. For the metal-ceramic FGM circular plate with clamped boundary condition, the mode function in polynomial form and the Galerkin method are adopted to derive the longitudinal and transverse coupling nonlinear vibration equations of the system under rotational motion and thermal effects, and the static deflection caused by rotation and density difference is also obtained. The improved multi-scale method is used to solve the equations, and then the frequency-amplitude response equation and analytical solution of the strong nonlinear system are obtained. Based on calculation examples, the amplitude-frequency curves, amplitude-excitation force curves, and amplitude-temperature curves of the FGM plate are presented, and the influence of different physical parameters on the resonance amplitude of the structure is analyzed. Reasonable consistence is evident by comparing the analytical and numerical solutions.
-
Key words:
- FGM circular plate /
- rotational motion /
- strong nonlinearity /
- primary resonance /
- analytical solution
-
表 1 两种材料的温度相关系数
Table 1. The coefficients of two materials related to temperature
相关系数 材料 $P_{-1} $ $P_{0} $ $P_{1} $ $P_{2} $ $P_{3} $ 弹性模量系数 $ \mathrm{Si}_{3} \mathrm{~N}_{4}$ $ 0$ $348.43 \times 10^{9} $ $-3.07 \times 10^{-4} $ $2.16 \times 10^{-7} $ $-8.95 \times 10^{-11} $ $\text { SUS304 } $ $ 0$ $ 201.04 \times 10^{9}$ $ 3.08 \times 10^{-4}$ $-6.53 \times 10^{-7} $ $ 0$ 热膨胀系数 $ \mathrm{Si}_{3} \mathrm{~N}_{4}$ $ 0$ $ 5.87 \times 10^{-6}$ $ 9.10 \times 10^{-4}$ $ 0$ $ 0$ $\text { SUS304 } $ $ 0$ $ 12.33 \times 10^{-6}$ $8.09 \times 10^{-4} $ $ 0$ $ 0$ -
[1] 韩杰才, 徐丽, 王保林, 等. 梯度功能材料的研究进展及展望[J]. 固体火箭技术, 2004, 27(3): 207 − 215. doi: 10.3969/j.issn.1006-2793.2004.03.012HAN Jiecai, XU Li, WANG Baolin, et al. Progress and prospects of functional gradient materials [J]. Journal of Solid Rocket Technology, 2004, 27(3): 207 − 215. (in Chinese) doi: 10.3969/j.issn.1006-2793.2004.03.012 [2] 胡君逸, 李跃明, 李海波, 等. 考虑热应力、热变形正交各向异性板的动特性及响应规律[J]. 工程力学, 2018, 35(8): 218 − 229. doi: 10.6052/j.issn.1000-4750.2017.03.0258HU Junyi, LI Yueming, LI Haibo, et al. Researches on vibration characteristic and dynamic Response of orthotropic plate with thermal stress and deformation [J]. Engineering Mechanics, 2018, 35(8): 218 − 229. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0258 [3] 赵军, 艾兴, 张建华. 功能梯度材料的发展及展望[J]. 材料导报, 1997, 11(4): 58 − 60.ZHAO Jun, AI Xing, ZHANG Jianhua. The development and prospects of functionally gradient materials [J]. Materials Review, 1997, 11(4): 58 − 60. (in Chinese) [4] TU T M, QUOC T H, VAN LONG N. Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments [J]. Aerospace Science and Technology, 2019, 84(1): 698 − 711. [5] 李世荣, 张靖华, 徐华. 功能梯度与均匀圆板弯曲解的线性转换关系[J]. 力学学报, 2011, 43(5): 871 − 877. doi: 10.6052/0459-1879-2011-5-lxxb2010-810LI Shirong, ZHANG Jinghua, XU Hua. Linear transformation between the bending solutions of functionally graded and homogenous circular plates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 871 − 877. (in Chinese) doi: 10.6052/0459-1879-2011-5-lxxb2010-810 [6] 赵伟东, 高士武, 黄永玉. 热环境中的功能梯度扁球壳非线性稳定性分析[J]. 工程力学, 2020, 37(8): 202 − 212. doi: 10.6052/j.issn.1000-4750.2019.09.0541ZHAO Weidong, GAO Shiwu, HUANG Yongyu. Nonlinear stability analysis of functionally graded shallow spherical shells in thermal environments [J]. Engineering Mechanics, 2020, 37(8): 202 − 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0541 [7] KIANI Y, ESLAMI M R. Nonlinear thermo-inertial stability of thin circular FGM plates [J]. Journal of the Franklin Institute, 2014, 351(2): 1057 − 1073. doi: 10.1016/j.jfranklin.2013.09.013 [8] 何昊南, 于开平. 考虑热对材料参数影响的FGM梁热后屈曲特性研究[J]. 工程力学, 2019, 36(4): 52 − 61. doi: 10.6052/j.issn.1000-4750.2018.03.0142HE Haonan, YU Kaiping. Thermal post-buckling analysis of FGM beams considering the heat effect on materials [J]. Engineering Mechanics, 2019, 36(4): 52 − 61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0142 [9] HU Y D, ZHANG Z Q. The bifurcation analysis on the circular functionally graded plate with combination resonances [J]. Nonlinear Dynamics, 2012, 67(3): 1779 − 1790. doi: 10.1007/s11071-011-0105-4 [10] BAYAT M, SALEEM M, SAHARI B B, et al. Thermo elastic analysis of a functionally graded rotating disk with small and large deflections [J]. Thin-Walled Structures, 2007, 45(7): 677 − 691. [11] HOSSEINI KORDKHEILI S A, NAGHDABADI R. Thermoelastic analysis of a functionally graded rotating disk [J]. Composite Structures, 2006, 79(4): 508 − 516. [12] SONI S, JAIN N K, JOSHI P V, et al. Effect of thermal environment on vibration response of partially cracked functionally graded plate coupled with fluid [J]. Materials Today: Proceedings, 2018, 5(14): 27810 − 27819. doi: 10.1016/j.matpr.2018.10.017 [13] 胡宇达, 包海军. 热环境中旋转运动功能梯度圆板的强非线性固有振动[J]. 固体力学学报, 2020, 41(3): 71 − 85.HU Yuda, BAO Haijun. Strongly nonlinear natural vibration of the functionally graded rotating circular plate in the thermal environment [J]. Chinese Journal of Solid Mechanics, 2020, 41(3): 71 − 85. (in Chinese) [14] YEH J Y. Free vibrations analysis of rotating polar orthotropic annular plates with ER damping treatment [J]. Composites Part B: Engineering, 2011, 42(4): 781 − 788. [15] HASHEMI S H, FARHADI S, CARRA S. Free vibration analysis of rotating thick plates [J]. Journal of Sound and Vibration, 2009, 323(1/2): 366 − 384. [16] BAYAT M, SAHARI B B, SALEEM M, et al. Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory [J]. Applied Mathematical Modelling, 2009, 33(11): 4215 − 4230. doi: 10.1016/j.apm.2009.03.001 [17] MARETIC R. Transverse vibration and stability of an eccentric rotating circular plate [J]. Journal of Sound and Vibration, 2003, 280(3): 467 − 478. [18] LI S R, XIONG P, CAO D F. Analysis of thermoelastic damping of functionally graded material micro plate based on the mindlin plate theory [J]. Key Engineering Materials, 2020, 865: 67 − 71. doi: 10.4028/www.scientific.net/KEM.865.67 [19] LI S R, MA H K. Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping [J]. Archive of Applied Mechanics, 2020, 90(6): 1285 − 1304. doi: 10.1007/s00419-020-01664-9 [20] REDDY J N, CHIN C D. Thermomechanical analysis of functionally graded cylinders and plates [J]. Journal of Thermal Stress, 1998, 21(6): 593 − 626. doi: 10.1080/01495739808956165 [21] 胡宇达, 朴江民. 磁场中旋转运动圆板的分叉与混沌研究[J]. 计算力学学报, 2017, 34(1): 17 − 26. doi: 10.7511/jslx201701002HU Yuda, PIAO Jiangmin. Bifurcation and chaos of a rotating circular plate in magnetic field [J]. Chinese Journal of Computational Mechanics, 2017, 34(1): 17 − 26. (in Chinese) doi: 10.7511/jslx201701002 [22] 徐芝纶. 弹性力学(下)[M]. 北京: 高等教育出版社, 2008: 169 − 172.XU Zhilun. Theory of elasticity (part2) [M]. Beijing: Higher Education Press, 2008: 169 − 172. (in Chinese) [23] SHEN H S. Thermal postbuckling of shear deformable fgm cylindrical shells with temperature-dependent properties [J]. Mechanics of Composite Materials & Structures, 2007, 14(6): 439 − 452. [24] 胡宇达, 张小广, 张志强. 功能梯度矩形板的强非线性共振分析[J]. 工程力学, 2012 , 29(3): 16 − 20.HU Yuda, ZHANG Xiaoguang, ZHANG Zhiqiang. Strongly nonlinear resonance analysis of functionally graded material rectangular plates [J]. Engineering Mechanics, 2012 , 29(3): 16 − 20. (in Chinese) [25] 张志强, 胡宇达. 热环境中功能梯度圆板的非线性动力响应分析[J]. 复合材料学报, 2011, 28(6): 237 − 244.ZHANG Zhiqiang, HU Yuda. Nonlinear dynamic response of circular functionally graded plate in thermal environment [J]. Acta Materiae Compositae Sinica, 2011, 28(6): 237 − 244. (in Chinese) -