COMPARATIVE TEST AND PREDICTION METHOD STUDY ON VIBRATION ISOLATION EFFECT OF FLOATING SLAB UNDER FIXED-POINT HAMMERING AND ON-SITE TRAIN
-
摘要: 通过现场及线下试验,测试了整体浮筑隔振措施在实际列车激励与定点锤击激励下的振动响应,分析了2种荷载激励下隔振效果的差异,并对定点锤击激励的有效性和准确性进行评价。结果表明:列车及定点锤击荷载激励下,浮筑隔振可显著减小振动加速度响应;两种荷载激励下,浮筑隔振体系的特征峰值和各频段能量分布走势相近。锤击激励下的计权Z振级隔振量略低于列车激励,其隔振效果偏于保守,可见,针对浮筑隔振系统的效果评价,实际列车激励方式要优于定点锤击激励方式。结合理论及试验分析,提出针对受振体柔性支撑浮筑隔振体系的隔振效果预测方法,可为类似隔振措施的评估和比选提供参考。Abstract: Through field and off-line tests, the vibration responses of the integral floating vibration isolation measures under the train excitation and fixed-point hammering excitation were tested, the differences of vibration isolation effects under the two kinds of load excitations were analyzed, and the effectiveness and accuracy of fixed-point hammering excitation was evaluated. The study results showed that: under the train and fixed-point hammering excitations, the vibration acceleration response of the floating isolation system could be significantly reduced. The characteristic peak value and energy distribution trend of the floating vibration isolation system under the two kinds of load excitations were similar. The vibration isolation quantity of weighted Z-Level under a hammering excitation was lower than that under a train excitation, and its vibration isolation effect was conservative. It could be seen that the actual train incentive mode is better than the fixed-point hammering incentive mode. A prediction method of vibration isolation effect for a flexible supported floating vibration isolation system was proposed, combined with the theoretical and experimental analysis, which can provide a reference for the evaluation and comparison of similar vibration isolation measures.
-
Key words:
- hammering excitation /
- vibration isolation /
- field test /
- prediction method /
- vibration response
-
表 1 钢弹簧参数
Table 1. Parameters of steel spring
型号 高度/
mm外径/
mm有效行程/
mm刚度/
(N/mm)阻尼比 计算频率/
Hz#1 50 30 25 57.0 0.03 9.7 #2 60 30 30 47.4 0.03 8.8 #3 40 20 20 31.6 0.03 7.3 表 2 不同激励下Z振级隔振量级
Table 2. Vibration isolation magnitude of Z vibration level under different excitation
测次 1号钢弹簧/dB 2号钢弹簧/dB 3号钢弹簧/dB 锤击
激励列车
激励锤击
激励列车
激励锤击
激励列车
激励1 4.0 5.9 2.0 5.3 4.1 1.6 2 3.3 4.9 3.8 2.2 5.1 7.0 3 1.5 3.6 1.3 5.2 1.9 2.9 4 2.4 3.4 5.9 3.4 4.4 7.9 5 3.1 2.6 2.9 3.9 3.7 5.6 均值 2.9 4.1 3.2 4.0 3.8 5.1 表 3 不同锤击力作用下振动量级及隔振量
Table 3. Vibration response and vibration isolation under different hammering forces
锤击高度/cm 振动量级$V_{{\rm{L}}_Z} $/dB 隔振量$V_{{\rm{L}}_I} $/dB 硬质钢块 钢弹簧 20 65.4 62.1 3.3 25 66.8 63.2 3.6 30 68.6 64.8 3.8 35 71.1 67.6 3.5 表 4 Z振级及隔振量对比
Table 4. Comparison of Z vibration level and vibration isolation
测点 参量 隔振前/dB 隔振后/dB 隔振量/dB 测点P 实测值 54.8 49.4 5.4 预测值 54.8 49.8 5.0 误差 — 0.4 0.4 测点Q 实测值 54.4 48.7 5.7 预测值 54.4 49.3 5.1 误差 — 0.6 0.6 -
[1] 宗刚, 郑玉琴, 任晓崧, 等. 建筑物对地铁引发场地振动影响的实测分析[J]. 工程力学, 2018, 35(增刊 1): 287 − 292. doi: 10.6052/j.issn.1000-4750.2017.06.S055ZONG Gang, ZHENG Yuqin, REN Xiaosong, et al. In-situ measurement and analysis of the influence of a building on ground vibration induced by metro [J]. Engineering Mechanics, 2018, 35(Suppl 1): 287 − 292. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S055 [2] VOGIATZIS K, ZAFIROPOULOU V, MOUZAKIS H. Monitoring and assessing the effects from Metro networks construction on the urban acoustic environment: The Athens Metro Line3 extension [J]. Science of the Total Environment, 2018, 639: 1360 − 1380. doi: 10.1016/j.scitotenv.2018.05.143 [3] 陈建国, 夏禾, 曹艳梅. 高架轨道交通引起的环境振动影响分析与预测[J]. 工程力学, 2012, 29(6): 285 − 291. doi: 10.6052/j.issn.1000-4750.2010.08.0606CHEN Jianguo, XIA He, CAO Yanmei. Analysis and prediction on environment vibration induced by elevated rail transit [J]. Engineering Mechanics, 2012, 29(6): 285 − 291. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.08.0606 [4] YANG J J, ZHU S Y, ZHAI W M, et al. Prediction and mitigation of train-induced vibrations of large-scale building constructed on subway tunnel [J]. Science of the Total Environment, 2019, 668: 485 − 499. doi: 10.1016/j.scitotenv.2019.02.397 [5] 梁瑞华, 马蒙, 刘卫丰, 等. 考虑地层动力特性差异的减振轨道减振效果评价[J]. 工程力学, 2020, 37(增刊): 75 − 81. doi: 10.6052/j.issn.1000-4750.2019.04.S010LIANG Ruihua, MA Meng, LIU Weifeng, et al. Evaluation of vibration mitigation effect of vibration isolated track considering stratum dynamic characteristics difference [J]. Engineering Mechanics, 2020, 37(Suppl): 75 − 81. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S010 [6] 姚锦宝, 胡敬梁. 空沟隔振对瑞利波传播影响的理论研究[J]. 铁道学报, 2019, 41(10): 123 − 129. doi: 10.3969/j.issn.1001-8360.2019.10.017YAO Jinbao, HU Jingliang. Theoretical study of effect of open trench vibration isolation on Rayleigh wave propagation [J]. Journal of the China Railway Society, 2019, 41(10): 123 − 129. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.10.017 [7] SAEED S, FAZLOLLAH S, MOJTABA G, et al. SSI effects on seismic behavior of smart base-isolated structures [J]. Geomechanics and Engineering, 2018, 14(2): 161 − 174. [8] LI H, YANG W G, LIU P, et al. Isolation effects of vehicle-induced vibration tested by integral floating method [J]. Advances in Mechanical Engineering, 2021, 13(8): 1 − 13. [9] LOMBAERT G, DEGRANDE G, FRANÇOIS S, et al. Ground-borne vibration due to railway traffic: a review of excitation mechanisms, prediction methods and mitigation measures [J]. Notes on Numerical Fluid Mechanics & Multidisciplinary Design, 2015, 126: 253 − 287. [10] 李克飞, 刘维宁, 孙晓静, 等. 北京地铁5号线地下线减振措施现场测试与分析[J]. 铁道学报, 2011, 33(4): 112 − 118. doi: 10.3969/j.issn.1001-8360.2011.04.017LI Kefei, LIU Weining, SUN Xiaojing, et al. In-situ test of vibration attenuation of underground line of Beijing metro Line 5 [J]. Journal of the China Railway Society, 2011, 33(4): 112 − 118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.04.017 [11] MA M, LIU W N, QIAN C Y, et al. Study of the train-induced vibration impact on a historic Bell Tower above two spatially overlapping metro lines [J]. Soil Dynamics and Earthquake Engineering, 2016, 81: 58 − 74. doi: 10.1016/j.soildyn.2015.11.007 [12] 金浩, 刘维宁. 枕下减振垫铺设方式对梯式轨道减振性能影响试验研究[J]. 土木工程学报, 2015, 48(2): 73 − 78.JIN Hao, LIU Weining. Experimental study on vibration reduction characteristics of ladder track with different arrangement of sleeper pads [J]. China Civil Engineering Journal, 2015, 48(2): 73 − 78. (in Chinese) [13] MA M, LIU W F, LI Y L, et al. An experimental study of vibration reduction of a ballasted ladder track [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2017, 231(9): 1035 − 1047. doi: 10.1177/0954409716642488 [14] 刘维宁, 陈嘉梁, 吴宗臻, 等. 地铁列车振动环境影响的深孔激振实测传递函数预测方法[J]. 土木工程学报, 2017, 50(9): 82 − 89.LIU Weining, CHEN Jialiang, WU Zongzhen, et al. Prediction method of measured deep-hole excitation transfer function for environmental influence of metro train-induced vibration [J]. China Civil Engineering Journal, 2017, 50(9): 82 − 89. (in Chinese) [15] 马蒙, 李明航, 谭新宇, 等. 地铁轮轨力耦合不平顺激励对轨道振动影响分析[J]. 工程力学, 2021, 38(5): 191 − 198. doi: 10.6052/j.issn.1000-4750.2020.06.0421MA Meng, LI Minghang, TAN Xinyu, et al. Influence analysis on track vibration due to coupled irregularity excitation of metro wheel-track [J]. Engineering Mechanics, 2021, 38(5): 191 − 198. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0421 [16] BREITSAMTER N, MUELLER-BORUTTAU F. Elastic Elements Reduce Vibration Emission–Some Thoughts on Insertion Loss [C]// The 6th European Conference on Structural Dynamics. Paris: European Association for Structural Dynamics, 2005: 641 − 644. [17] VANHONACKER P. Cargo Vibes Project Deliverable 2.2- Attenuation of ground-borne vibration affecting residents near railway lines [R]. Leuven: Alfa Products and Technologies, 2013. [18] 马蒙, 李明航, 吴宗臻, 等. 地铁列车与定点锤击荷载下浮置板轨道减振效果对比试验研究[J]. 中国铁道科学, 2019, 40(5): 28 − 33. doi: 10.3969/j.issn.1001-4632.2019.05.05MA Meng, LI Minghang, WU Zongzhen, et al. Comparative experimental study on vibration reduction effect of floating slab track under metro train and fixed point hammering loads [J]. China Railway Science, 2019, 40(5): 28 − 33. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.05.05 [19] 李林峰, 马蒙, 刘维宁, 等. 不同激励作用下钢弹簧浮置板轨道减振效果研究[J]. 工程力学, 2018, 35(增刊 1): 253 − 258. doi: 10.6052/j.issn.1000-4750.2017.05.S048LI Linfeng, MA Meng, LIU Weining, et al. Analysis for the vibration reduction characteristics of steel spring floating slab tracks under different types of excitation [J]. Engineering Mechanics, 2018, 35(Suppl 1): 253 − 258. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.S048 [20] GB 10070−88, 城市区域环境振动标准 [S]. 北京: 中国标准出版社, 1988.GB 10070−88, Standard of environment vibration in urban area [S]. Beijing: China Standards Press, 1988. (in Chinese) -