留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定点锤击及现场列车作用下浮筑隔振效果对比试验及预测方法研究

李昊 杨维国 邹晓光 刘佩 王萌

李昊, 杨维国, 邹晓光, 刘佩, 王萌. 定点锤击及现场列车作用下浮筑隔振效果对比试验及预测方法研究[J]. 工程力学, 2022, 39(11): 233-244. doi: 10.6052/j.issn.1000-4750.2021.06.0495
引用本文: 李昊, 杨维国, 邹晓光, 刘佩, 王萌. 定点锤击及现场列车作用下浮筑隔振效果对比试验及预测方法研究[J]. 工程力学, 2022, 39(11): 233-244. doi: 10.6052/j.issn.1000-4750.2021.06.0495
LI Hao, YANG Wei-guo, ZOU Xiao-guang, LIU Pei, WANG Meng. COMPARATIVE TEST AND PREDICTION METHOD STUDY ON VIBRATION ISOLATION EFFECT OF FLOATING SLAB UNDER FIXED-POINT HAMMERING AND ON-SITE TRAIN[J]. Engineering Mechanics, 2022, 39(11): 233-244. doi: 10.6052/j.issn.1000-4750.2021.06.0495
Citation: LI Hao, YANG Wei-guo, ZOU Xiao-guang, LIU Pei, WANG Meng. COMPARATIVE TEST AND PREDICTION METHOD STUDY ON VIBRATION ISOLATION EFFECT OF FLOATING SLAB UNDER FIXED-POINT HAMMERING AND ON-SITE TRAIN[J]. Engineering Mechanics, 2022, 39(11): 233-244. doi: 10.6052/j.issn.1000-4750.2021.06.0495

定点锤击及现场列车作用下浮筑隔振效果对比试验及预测方法研究

doi: 10.6052/j.issn.1000-4750.2021.06.0495
基金项目: 国家重点研发计划项目(2019YFC1521000);中央高校基本科研业务费专项资金资助项目(2020YJS120,2020JBZ110)
详细信息
    作者简介:

    李 昊(1993−),男,浙江人,博士生,主要从事交通致结构振动的抗振、减隔振研究(E-mail: 18115027@bjtu.edu.cn)

    邹晓光(1995−),男,湖北人,博士生,主要从事交通致结构振动的抗振、减隔振研究(E-mail: 20115035@bjtu.edu.cn)

    刘 佩(1982−),女,河北人,副教授,博士,主要从事结构减隔振(震)理论和设计方法研究(E-mail: peiliu@bjtu.edu.cn)

    王 萌(1985−),女,黑龙江人,教授,博士,主要从事结构减隔振(震)理论和设计方法研究(E-mail: wangmeng1117@gmail.com)

    通讯作者:

    杨维国(1973−),男,山西人,教授,博士,主要从事结构减隔振(震)理论和设计方法研究(E-mail: wgyang1@bjtu.edu.cn)

  • 中图分类号: X827

COMPARATIVE TEST AND PREDICTION METHOD STUDY ON VIBRATION ISOLATION EFFECT OF FLOATING SLAB UNDER FIXED-POINT HAMMERING AND ON-SITE TRAIN

  • 摘要: 通过现场及线下试验,测试了整体浮筑隔振措施在实际列车激励与定点锤击激励下的振动响应,分析了2种荷载激励下隔振效果的差异,并对定点锤击激励的有效性和准确性进行评价。结果表明:列车及定点锤击荷载激励下,浮筑隔振可显著减小振动加速度响应;两种荷载激励下,浮筑隔振体系的特征峰值和各频段能量分布走势相近。锤击激励下的计权Z振级隔振量略低于列车激励,其隔振效果偏于保守,可见,针对浮筑隔振系统的效果评价,实际列车激励方式要优于定点锤击激励方式。结合理论及试验分析,提出针对受振体柔性支撑浮筑隔振体系的隔振效果预测方法,可为类似隔振措施的评估和比选提供参考。
  • 图  1  隔振体系计算模型

    Figure  1.  Calculation model of vibration isolation system

    图  2  振动传递比

    Figure  2.  Vibration transfer ratio

    图  3  浮筑隔振系统参数取值流程图

    Figure  3.  Flow chart for parameter selection of floating vibration isolation system

    图  4  浮筑隔振体系示意图

    Figure  4.  Floating vibration isolation system

    图  5  定点锤击与列车激励示意图

    Figure  5.  Schematic diagram of fixed-point hammering and train excitation

    图  6  列车激励下典型加速度响应时程

    Figure  6.  Typical acceleration response time history under train excitation

    图  7  列车激励下典型加速度响应频谱

    Figure  7.  Typical frequency spectrum under train excitation

    图  8  锤击激励下典型加速度响应时程

    Figure  8.  Typical acceleration response time history under hammering excitation

    图  9  锤击激励下典型加速度响应频谱

    Figure  9.  Typical frequency spectrum under hammering excitation

    图  10  1/3倍频程曲线及包络范围

    Figure  10.  1/3 octave curve and envelope range

    图  11  不同荷载激励下隔振效果

    Figure  11.  Vibration isolation effect under under different excitation

    图  12  不同锤击力作用下振动响应

    Figure  12.  Vibration response under different hammering forces

    图  13  不同锤击力作用下振级及隔振效果

    Figure  13.  Vibration level and vibration isolation effect under different hammering force

    图  14  预测方法流程图

    Figure  14.  Flow chart of prediction method

    图  15  建筑物与地铁空间关系图

    Figure  15.  Spatial relationship between building and metro

    图  16  实测隔振前后加速时程及频谱对比

    Figure  16.  Measured acceleration time history and frequency spectrum before and after vibration isolation

    图  17  各频段振级实测及预测值对比

    Figure  17.  Comparison of measured and predicted vibration levels in different frequency bands

    表  1  钢弹簧参数

    Table  1.   Parameters of steel spring

    型号高度/
    mm
    外径/
    mm
    有效行程/
    mm
    刚度/
    (N/mm)
    阻尼比计算频率/
    Hz
    #150302557.00.039.7
    #260303047.40.038.8
    #340202031.60.037.3
    下载: 导出CSV

    表  2  不同激励下Z振级隔振量级

    Table  2.   Vibration isolation magnitude of Z vibration level under different excitation

    测次1号钢弹簧/dB2号钢弹簧/dB3号钢弹簧/dB
    锤击
    激励
    列车
    激励
    锤击
    激励
    列车
    激励
    锤击
    激励
    列车
    激励
    14.05.92.05.34.11.6
    23.34.93.82.25.17.0
    31.53.61.35.21.92.9
    42.43.45.93.44.47.9
    53.12.62.93.93.75.6
    均值2.94.13.24.03.85.1
    下载: 导出CSV

    表  3  不同锤击力作用下振动量级及隔振量

    Table  3.   Vibration response and vibration isolation under different hammering forces

    锤击高度/cm振动量级$V_{{\rm{L}}_Z} $/dB隔振量$V_{{\rm{L}}_I} $/dB
    硬质钢块钢弹簧
    2065.462.13.3
    2566.863.23.6
    3068.664.83.8
    3571.167.63.5
    下载: 导出CSV

    表  4  Z振级及隔振量对比

    Table  4.   Comparison of Z vibration level and vibration isolation

    测点参量隔振前/dB隔振后/dB隔振量/dB
    测点P实测值54.849.45.4
    预测值54.849.85.0
    误差0.40.4
    测点Q实测值54.448.75.7
    预测值54.449.35.1
    误差0.60.6
    下载: 导出CSV
  • [1] 宗刚, 郑玉琴, 任晓崧, 等. 建筑物对地铁引发场地振动影响的实测分析[J]. 工程力学, 2018, 35(增刊 1): 287 − 292. doi: 10.6052/j.issn.1000-4750.2017.06.S055

    ZONG Gang, ZHENG Yuqin, REN Xiaosong, et al. In-situ measurement and analysis of the influence of a building on ground vibration induced by metro [J]. Engineering Mechanics, 2018, 35(Suppl 1): 287 − 292. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S055
    [2] VOGIATZIS K, ZAFIROPOULOU V, MOUZAKIS H. Monitoring and assessing the effects from Metro networks construction on the urban acoustic environment: The Athens Metro Line3 extension [J]. Science of the Total Environment, 2018, 639: 1360 − 1380. doi: 10.1016/j.scitotenv.2018.05.143
    [3] 陈建国, 夏禾, 曹艳梅. 高架轨道交通引起的环境振动影响分析与预测[J]. 工程力学, 2012, 29(6): 285 − 291. doi: 10.6052/j.issn.1000-4750.2010.08.0606

    CHEN Jianguo, XIA He, CAO Yanmei. Analysis and prediction on environment vibration induced by elevated rail transit [J]. Engineering Mechanics, 2012, 29(6): 285 − 291. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.08.0606
    [4] YANG J J, ZHU S Y, ZHAI W M, et al. Prediction and mitigation of train-induced vibrations of large-scale building constructed on subway tunnel [J]. Science of the Total Environment, 2019, 668: 485 − 499. doi: 10.1016/j.scitotenv.2019.02.397
    [5] 梁瑞华, 马蒙, 刘卫丰, 等. 考虑地层动力特性差异的减振轨道减振效果评价[J]. 工程力学, 2020, 37(增刊): 75 − 81. doi: 10.6052/j.issn.1000-4750.2019.04.S010

    LIANG Ruihua, MA Meng, LIU Weifeng, et al. Evaluation of vibration mitigation effect of vibration isolated track considering stratum dynamic characteristics difference [J]. Engineering Mechanics, 2020, 37(Suppl): 75 − 81. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S010
    [6] 姚锦宝, 胡敬梁. 空沟隔振对瑞利波传播影响的理论研究[J]. 铁道学报, 2019, 41(10): 123 − 129. doi: 10.3969/j.issn.1001-8360.2019.10.017

    YAO Jinbao, HU Jingliang. Theoretical study of effect of open trench vibration isolation on Rayleigh wave propagation [J]. Journal of the China Railway Society, 2019, 41(10): 123 − 129. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.10.017
    [7] SAEED S, FAZLOLLAH S, MOJTABA G, et al. SSI effects on seismic behavior of smart base-isolated structures [J]. Geomechanics and Engineering, 2018, 14(2): 161 − 174.
    [8] LI H, YANG W G, LIU P, et al. Isolation effects of vehicle-induced vibration tested by integral floating method [J]. Advances in Mechanical Engineering, 2021, 13(8): 1 − 13.
    [9] LOMBAERT G, DEGRANDE G, FRANÇOIS S, et al. Ground-borne vibration due to railway traffic: a review of excitation mechanisms, prediction methods and mitigation measures [J]. Notes on Numerical Fluid Mechanics & Multidisciplinary Design, 2015, 126: 253 − 287.
    [10] 李克飞, 刘维宁, 孙晓静, 等. 北京地铁5号线地下线减振措施现场测试与分析[J]. 铁道学报, 2011, 33(4): 112 − 118. doi: 10.3969/j.issn.1001-8360.2011.04.017

    LI Kefei, LIU Weining, SUN Xiaojing, et al. In-situ test of vibration attenuation of underground line of Beijing metro Line 5 [J]. Journal of the China Railway Society, 2011, 33(4): 112 − 118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.04.017
    [11] MA M, LIU W N, QIAN C Y, et al. Study of the train-induced vibration impact on a historic Bell Tower above two spatially overlapping metro lines [J]. Soil Dynamics and Earthquake Engineering, 2016, 81: 58 − 74. doi: 10.1016/j.soildyn.2015.11.007
    [12] 金浩, 刘维宁. 枕下减振垫铺设方式对梯式轨道减振性能影响试验研究[J]. 土木工程学报, 2015, 48(2): 73 − 78.

    JIN Hao, LIU Weining. Experimental study on vibration reduction characteristics of ladder track with different arrangement of sleeper pads [J]. China Civil Engineering Journal, 2015, 48(2): 73 − 78. (in Chinese)
    [13] MA M, LIU W F, LI Y L, et al. An experimental study of vibration reduction of a ballasted ladder track [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2017, 231(9): 1035 − 1047. doi: 10.1177/0954409716642488
    [14] 刘维宁, 陈嘉梁, 吴宗臻, 等. 地铁列车振动环境影响的深孔激振实测传递函数预测方法[J]. 土木工程学报, 2017, 50(9): 82 − 89.

    LIU Weining, CHEN Jialiang, WU Zongzhen, et al. Prediction method of measured deep-hole excitation transfer function for environmental influence of metro train-induced vibration [J]. China Civil Engineering Journal, 2017, 50(9): 82 − 89. (in Chinese)
    [15] 马蒙, 李明航, 谭新宇, 等. 地铁轮轨力耦合不平顺激励对轨道振动影响分析[J]. 工程力学, 2021, 38(5): 191 − 198. doi: 10.6052/j.issn.1000-4750.2020.06.0421

    MA Meng, LI Minghang, TAN Xinyu, et al. Influence analysis on track vibration due to coupled irregularity excitation of metro wheel-track [J]. Engineering Mechanics, 2021, 38(5): 191 − 198. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0421
    [16] BREITSAMTER N, MUELLER-BORUTTAU F. Elastic Elements Reduce Vibration Emission–Some Thoughts on Insertion Loss [C]// The 6th European Conference on Structural Dynamics. Paris: European Association for Structural Dynamics, 2005: 641 − 644.
    [17] VANHONACKER P. Cargo Vibes Project Deliverable 2.2- Attenuation of ground-borne vibration affecting residents near railway lines [R]. Leuven: Alfa Products and Technologies, 2013.
    [18] 马蒙, 李明航, 吴宗臻, 等. 地铁列车与定点锤击荷载下浮置板轨道减振效果对比试验研究[J]. 中国铁道科学, 2019, 40(5): 28 − 33. doi: 10.3969/j.issn.1001-4632.2019.05.05

    MA Meng, LI Minghang, WU Zongzhen, et al. Comparative experimental study on vibration reduction effect of floating slab track under metro train and fixed point hammering loads [J]. China Railway Science, 2019, 40(5): 28 − 33. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.05.05
    [19] 李林峰, 马蒙, 刘维宁, 等. 不同激励作用下钢弹簧浮置板轨道减振效果研究[J]. 工程力学, 2018, 35(增刊 1): 253 − 258. doi: 10.6052/j.issn.1000-4750.2017.05.S048

    LI Linfeng, MA Meng, LIU Weining, et al. Analysis for the vibration reduction characteristics of steel spring floating slab tracks under different types of excitation [J]. Engineering Mechanics, 2018, 35(Suppl 1): 253 − 258. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.S048
    [20] GB 10070−88, 城市区域环境振动标准 [S]. 北京: 中国标准出版社, 1988.

    GB 10070−88, Standard of environment vibration in urban area [S]. Beijing: China Standards Press, 1988. (in Chinese)
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  69
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 录用日期:  2021-12-10
  • 修回日期:  2021-11-10
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回