留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究

苏宁 彭士涛 洪宁宁

苏宁, 彭士涛, 洪宁宁. 高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究[J]. 工程力学, 2022, 39(11): 143-156. doi: 10.6052/j.issn.1000-4750.2021.06.0490
引用本文: 苏宁, 彭士涛, 洪宁宁. 高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究[J]. 工程力学, 2022, 39(11): 143-156. doi: 10.6052/j.issn.1000-4750.2021.06.0490
SU Ning, PENG Shi-tao, HONG Ning-ning. THE WIND-INDUCED VIBRATION CONTROL OF HIGH-RISE CHIMNEYS BY A TUNED MASS DAMPER INERTER (TMDI)[J]. Engineering Mechanics, 2022, 39(11): 143-156. doi: 10.6052/j.issn.1000-4750.2021.06.0490
Citation: SU Ning, PENG Shi-tao, HONG Ning-ning. THE WIND-INDUCED VIBRATION CONTROL OF HIGH-RISE CHIMNEYS BY A TUNED MASS DAMPER INERTER (TMDI)[J]. Engineering Mechanics, 2022, 39(11): 143-156. doi: 10.6052/j.issn.1000-4750.2021.06.0490

高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究

doi: 10.6052/j.issn.1000-4750.2021.06.0490
基金项目: 国家重点研发计划项目(2017YFE0130700);天津市自然科学基金项目(19JCQNJC06700);天津市科技计划项目(19PTZWHZ0070);中央级公益性科研院所基本科研业务费专项项目(TKS20210409,TKS20200106)
详细信息
    作者简介:

    彭士涛(1979−),男,湖北人,教授级高工,博士,主要从事大气环境与风工程研究(E-mail: pengshitaotj@126.com)

    洪宁宁(1980−),女,江苏人,副研究员,硕士,主要从事大气环境与风工程研究(E-mail: 15822850239@126.com)

    通讯作者:

    苏 宁(1990−),男,黑龙江人,助理研究员,博士,主要从事结构风工程研究 (E-mail: souvenire@126.com)

  • 中图分类号: TU312;X966

THE WIND-INDUCED VIBRATION CONTROL OF HIGH-RISE CHIMNEYS BY A TUNED MASS DAMPER INERTER (TMDI)

  • 摘要: 高耸烟囱是一种典型的风敏感结构,尤其是横风向涡激共振会对结构安全造成不利影响,往往需要对其进行风振控制。相比传统的调谐质量阻尼器(TMD),调谐质量惯容阻尼器(TMDI)能够通过惯容器实现动力吸振器的轻量化设计。但惯容器的连接位置,不仅影响其在对高耸烟囱结构上实施的难度,对风振控制效果的影响也尚待定量化研究。该文将高耸烟囱简化为广义单自由度结构,基于风荷载频谱的滤波表示,推导了TMDI控制下结构风振响应的解析解。在此基础上,对TMDI最优设计参数进行了参数化分析,总结了相应的经验公式供设计参考。此外,通过对比TMDI与TMD的风振响应控制效果,给出了惯容器起增强控制效果的判别准则,以及TMDI的等效TMD质量比计算公式,以指导动力吸振器的轻量化设计。最后,通过对某270 m高混凝土烟囱风洞试验数据进行TMDI风振控制算例分析,验证了理论分析的有效性。结果表明,采用该文优化设计方法,TMDI可降低涡激共振锁定区内高耸烟囱的设计风荷载45%以上。
  • 图  1  齿条齿轮式惯容器示意图

    Figure  1.  Diagram of rack-and-pinion inerter

    图  2  高耸烟囱结构分析模型示意图

    Figure  2.  Diagram of analysis model of high-rise chimney

    图  3  无量纲广义风荷载功率谱

    Figure  3.  Reduced power spectra of generalized wind loads

    图  4  典型工况下Jw(虚线)、Ja(实线)、Jc(点划线)随νζd变化的等值线图(μ = 1%,ζs = 1%)

    Figure  4.  Contours of Jw (dash line), Ja (solid line) and Jc (dot dash line) with respect to ν and ζd under typical cases (μ = 1%, ζs = 1%)

    图  5  最优控制参数(νoptζdopt)和最优控制比Jopt随惯容器参数(βφ)的变化(μ = 1%,ζs = 1%)

    Figure  5.  Optimal parameter (νopt, ζdopt) optimal control ratio Jopt with respect to inerter parameter (β, φ) (μ = 1%, ζs = 1%)

    图  6  采用最优控制参数(νoptζdopt)经验公式得到的最优控制比Jopt与分析结果的对比

    Figure  6.  Comparisons of Jopt results estimated by empirical formula of optimal parameter (νopt, ζdopt) with parametric analysis results

    图  7  惯容器影响系数R随惯容器参数(βφ)的变化(μ = 1%)

    Figure  7.  Inerter influence factor R with inerter parameters (β, φ) with μ = 1%

    图  8  不同质量比μ下的惯容器增强区边界线

    Figure  8.  Inerter enhancement boundary lines under different mass ratios μ

    图  9  惯容器影响系数R随判别参数β·(1 – φ)2 / μ的变化

    Figure  9.  Inerter influence factor R with respect to β·(1–φ)2/μ

    图  10  惯容增强区判别准则的假设检验

    Figure  10.  Hypothesis test on creation of inerter enhancement region

    图  11  TMD和GTMDI的最优控制比

    Figure  11.  Optimal control ratios of TMD and GTMDI

    图  12  惯容影响系数R的经验公式与分析结果对比

    Figure  12.  Comparison between empirical formula and analysis results of inerter influence factor R

    图  13  烟囱几何尺寸及振型

    Figure  13.  Geometric information and vibration modes of chimney

    图  14  气弹模型风洞试验得到的气动阻尼比随风速的变化

    Figure  14.  Aerodynamic damping ratio with respect to wind speed obtained by wind tunnel tests on an aeroelastic model

    图  15  不同控制工况下的烟囱脉动风振响应均方根

    Figure  15.  Root of mean square values of wind-induced responses on chimney under different control cases

    图  16  典型控制工况TMDI与等效TMD横风向共振响应时程对比(U/UCr = 1.17)

    Figure  16.  Comparisons of time histories of resonant cross-wind responses controlled by TMDI and equivalent TMD under typical cases (U/UCr = 1.17)

    图  17  不同设计风速下的最不利风振响应

    Figure  17.  Most unfavorable wind-induced responses under different design wind speeds

    图  18  不同设计风速下的最不利风振响应控制率

    Figure  18.  Control rates of most unfavorable wind-induced responses under different design wind speeds

    表  1  风振控制计算工况阻尼器详细参数

    Table  1.   Detailed damper parameters of wind-induced vibration control cases

    工况号参数12345
    μ/(%) 1.000 1.000 1.000 1.000 1.000
    β/(%) 0.000 20.000 20.000 20.000 20.000
    φ 0.900 0.750 0.500 0.000
    ν 0.990 0.993 0.983 0.947 0.826
    ζd/(%) 4.975 3.827 6.505 11.490 20.830
    m/t 45.880 45.880 45.880 45.880 45.880
    c/(kN·s/m) 11.210 181.700 305.600 520.200 822.900
    k/(kN/m) 276.800 5848.100 5726.800 5319.300 4049.900
    b/(kN·s2/m) 0.000 917.600 917.600 917.600 917.600
    χ/m 256 233 193 0
    μe/(%) 1.0 2.25 6.0 21.0
    下载: 导出CSV

    表  2  典型风速下风振响应计算结果及误差

    Table  2.   Results and errors of wind-induced responses under typical wind speed cases

    工况U/UCr方法顺风向横风向
    σxa/D/(%)误差/(%)σxc/D/(%)误差/(%)
    未控制 0.68 气弹试验 0.044 0.090
    时域分析 0.045 2.0 0.095 5.9
    本文方法 0.047 6.2 0.097 8.2
    1.17 气弹试验 0.122 0.460
    时域分析 0.125 2.3 0.474 3.1
    本文方法 0.127 3.9 0.475 3.3
    2.63 气弹试验 0.822 0.760
    时域分析 0.827 0.6 0.762 0.2
    本文方法 0.841 2.3 0.777 2.1
    控制工况1 0.68 时域分析 0.032 0.070
    本文方法 0.032 1.2 0.075 7.8
    1.17 时域分析 0.084 0.326
    本文方法 0.087 3.4 0.317 −2.8
    2.63 时域分析 0.542 0.596
    本文方法 0.545 0.5 0.597 0.2
    控制工况2 0.68 时域分析 0.035 0.076
    本文方法 0.035 1.5 0.083 8.7
    1.17 时域分析 0.093 0.365
    本文方法 0.097 3.5 0.355 −2.9
    2.63 时域分析 0.613 0.651
    本文方法 0.617 0.5 0.653 0.2
    控制工况3 0.68 时域分析 0.030 0.065
    本文方法 0.030 1.0 0.070 7.2
    1.17 时域分析 0.078 0.300
    本文方法 0.080 2.1 0.291 −2.7
    2.63 时域分析 0.499 0.555
    本文方法 0.502 0.5 0.556 0.2
    控制工况4 0.68 时域分析 0.026 0.054
    本文方法 0.027 0.4 0.057 6.2
    1.17 时域分析 0.067 0.240
    本文方法 0.069 2.9 0.234 −2.6
    2.63 时域分析 0.408 0.458
    本文方法 0.410 0.5 0.459 0.2
    控制工况5 0.68 时域分析 0.024 0.042
    本文方法 0.024 −0.3 0.044 5.5
    1.17 时域分析 0.057 0.184
    本文方法 0.059 2.7 0.179 −2.6
    2.63 时域分析 0.329 0.357
    本文方法 0.331 0.4 0.357 0.2
    下载: 导出CSV
  • [1] SMITH M C. Synthesis of mechanical networks: The inerter [J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648 − 1662. doi: 10.1109/TAC.2002.803532
    [2] MA R S, BI K M, HAO H. Inerter-based structural vibration control: A state-of-the-art review [J]. Engineering Structures, 2021, 243: 112655. doi: 10.1016/j.engstruct.2021.112655
    [3] 罗一帆, 孙洪鑫, 王修勇. 电磁调谐双质阻尼器的H2 参数优化及对结构减震分析[J]. 工程力学, 2019, 36(4): 89 − 99. doi: 10.6052/j.issn.1000-4750.2018.01.0027

    LUO Yifan, SUN Hongxin, WANG Xiuyong. The H2 parametric optimization and structural vibration suppression of electromagnetic tuned mass-inerter dampers [J]. Engineering Mechanics, 2019, 36(4): 89 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0027
    [4] DEN HARTOG J P. Mechanical vibrations [M]. 4th ed. New York: McGraw-Hill, 1956.
    [5] ASAMI T, NISHIHARA O, BAZ A M. Analytical solutions to Hand H2 optimization of dynamic vibration absorbers attached to damped linear systems [J]. Journal of Vibration and Acoustics, 2002, 124: 284 − 295. doi: 10.1115/1.1456458
    [6] 王宝顺, 何浩祥, 闫维明. 质量调谐-颗粒阻尼器复合减振体系的力学解析及优化分析[J]. 工程力学, 2021, 38(6): 191 − 208. doi: 10.6052/j.issn.1000-4750.2020.07.0463

    WANG Baoshun, HE Haoxiang, YAN Weiming. Analytical model and optimization analysis of combined damping system with TMD and particle damper [J]. Engineering Mechanics, 2021, 38(6): 191 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0463
    [7] GAO H, KWOK K C S, SAMALI B. Optimization of tuned liquid column dampers [J]. Engineering Structures, 1997, 19(6): 476 − 486. doi: 10.1016/S0141-0296(96)00099-5
    [8] DI MATTEO A, IACONO F L, NAVARRA G, et al. Direct evaluation of the equivalent linear damping for TLCD systems in random vibration for pre-design purposes [J]. International Journal of Non-Linear Mechanics, 2014, 63: 19 − 30. doi: 10.1016/j.ijnonlinmec.2014.03.009
    [9] OLIVA M, BARONE G, NAVARRA G. Optimal design of nonlinear energy sinks for SDOF structures subjected to white noise base excitations [J]. Engineering Structures, 2017, 145(15): 135 − 152.
    [10] 刘艮, 陈贡发. 基于NES的空间桁架结构被动减振研究[J]. 工程力学, 2019, 36(4): 89 − 99. doi: 10.6052/j.issn.1000-4750.2019.10.0617

    LIU Gen, CHEN Gongfa. Passive vibration reduction of space truss structures based on NES [J]. Engineering Mechanics, 2019, 36(4): 89 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0617
    [11] 陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 149 − 158. doi: 10.6052/j.issn.1000-4750.2018.01.0053

    CHEN Yangyang, CHEN Kai, TAN Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness [J]. Engineering Mechanics, 2019, 36(3): 149 − 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0053
    [12] MARIAN L, GIARALIS A. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support excited structural systems [J]. Probabilistic Engineering Mechanics, 2014, 38: 156 − 164. doi: 10.1016/j.probengmech.2014.03.007
    [13] PIETROSANTI D, DE ANGELIS M, BASILI M. Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI) [J]. Earthquake Engineering and Structural Dynamics, 2017, 46: 1367 − 1388. doi: 10.1002/eqe.2861
    [14] DI MATTEO A, MASNATA C, PIRROTTA A. Simplified analytical solution for the optimal design of tuned mass damper inerter for base isolated structures [J]. Mechanical Systems and Signal Processing, 2019, 134: 106337. doi: 10.1016/j.ymssp.2019.106337
    [15] GIARALIS A, TAFLANIDIS A A. Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria [J]. Structural Control and Health Monitoring, 2017, 25: e2082.
    [16] RUIZ R, TAFLANIDIS A A, GIARALIS A, et al. Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures [J]. Engineering Structures, 2018, 177: 836 − 850. doi: 10.1016/j.engstruct.2018.08.074
    [17] 王钦华, 雷伟, 祝志文, 等. 单重和多重调谐质量惯容阻尼器控制连体超高层建筑风振响应比较研究[J]. 建筑结构学报, 2021, 42(4): 25 − 34.

    WANG Qinhua, LEI Wei, ZHU Zhiwen, et al. Comparison of mitigation effects on wind-induced response of connected super-high-rise buildings controlled by TMDI and MTMDI [J]. Journal of Building Structures, 2021, 42(4): 25 − 34. (in Chinese)
    [18] 雷伟. TMDI控制连体超高层建筑风振响应研究及其参数分析[D]. 汕头: 汕头大学, 2019: 63 − 65.

    LEI Wei. Study on TMDI controlling wind-induced vibration response of linked super high-rise buildings and its parameter analysis [D]. Shantou: Shantou University, 2019. (in Chinese)
    [19] XU K, BI K, HAN Q, et al. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study [J]. Engineering Structures, 2019, 182: 101 − 111. doi: 10.1016/j.engstruct.2018.12.067
    [20] DAI J, XU Z D, GAI P P. Tuned mass-damper-inerter control of wind-induced vibration of flexible structures based on inerter location [J]. Engineering Structures, 2019, 199: 109585. doi: 10.1016/j.engstruct.2019.109585
    [21] WANG Z, GIARALIS A. Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping [J]. Structural Control and Health Monitoring, 2021: e2756. doi: 10.1002/stc.2756
    [22] SU N, CAO Z, WU Y. Fast frequency domain algorithm to estimate the dynamic wind-induced response on large-span roofs based on Cauchy’s residue theorem [J]. International Journal of Structural Stability and Dynamics, 2018, 18(3): 1850037. doi: 10.1142/S0219455418500372
    [23] 苏宁, 基于风压谱的大跨屋盖结构抗风设计理论研究与应用 [D]. 哈尔滨: 哈尔滨工业大学, 2018.

    SU Ning. Research and application of wind-resistant design theories of large-span roof structures based on wind pressure spectra [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [24] CHOI H, KANDA J. Semi-empirical formulae for dynamic alongwind force estimation [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 1994, 59(463): 9 − 18. doi: 10.3130/aijs.59.9
    [25] Structural Standards Committee, Architectural Institute of Japan (AIJ). Recommendations for loads on buildings [S]. Tokyo (Japan), 2015.
    [26] VICKERY B J, BASU R. Simplified approaches to the evaluation of the across-wind response of chimneys [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14(1 − 3): 153 − 166. doi: 10.1016/0167-6105(83)90019-3
    [27] CHOI H, KANDA J. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46/47: 507 − 516. doi: 10.1016/0167-6105(93)90318-I
    [28] SPANOS P D, SUN Y, SU N. Advantages of filter approaches for the determination of wind-induced response of large-span roof structures [J]. Journal of Engineering Mechanics, 2017, 143(9): 04017066. doi: 10.1061/(ASCE)EM.1943-7889.0001261
    [29] 高科. 港口高耸烟囱风荷载的风洞试验研究及中美规范对比[J]. 水道港口, 2020, 41(6): 675 − 681.

    GAO Ke. Wind tunnel study on wind load of port high-rise chimney and comparisons with China and US codes [J]. Journal of Waterway and Harbor, 2020, 41(6): 675 − 681. (in Chinese)
    [30] ASCE/SEI 7-16, Minimum design loads and associated criteria for buildings and other structures [S]. American Society of Civil Engineers, 2016.
    [31] ACI 307-08, Code Requirements for Reinforced Concrete Chimneys and Commentary [S]. American Concrete Institute, 2013.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  126
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-08-27
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回