THE WIND-INDUCED VIBRATION CONTROL OF HIGH-RISE CHIMNEYS BY A TUNED MASS DAMPER INERTER (TMDI)
-
摘要: 高耸烟囱是一种典型的风敏感结构,尤其是横风向涡激共振会对结构安全造成不利影响,往往需要对其进行风振控制。相比传统的调谐质量阻尼器(TMD),调谐质量惯容阻尼器(TMDI)能够通过惯容器实现动力吸振器的轻量化设计。但惯容器的连接位置,不仅影响其在对高耸烟囱结构上实施的难度,对风振控制效果的影响也尚待定量化研究。该文将高耸烟囱简化为广义单自由度结构,基于风荷载频谱的滤波表示,推导了TMDI控制下结构风振响应的解析解。在此基础上,对TMDI最优设计参数进行了参数化分析,总结了相应的经验公式供设计参考。此外,通过对比TMDI与TMD的风振响应控制效果,给出了惯容器起增强控制效果的判别准则,以及TMDI的等效TMD质量比计算公式,以指导动力吸振器的轻量化设计。最后,通过对某270 m高混凝土烟囱风洞试验数据进行TMDI风振控制算例分析,验证了理论分析的有效性。结果表明,采用该文优化设计方法,TMDI可降低涡激共振锁定区内高耸烟囱的设计风荷载45%以上。Abstract: The high-rise chimney is a typical wind-sensitive structure. The crosswind vortex-induced resonance will have an adverse impact on the structural safety. Compared with traditional tuned mass dampers (TMDs), the tuned mass damper inerter (TMDI) can realize the lightweight design of the dynamic vibration absorber via the massless inerter. However, the location of the inerter affects not only its implementation on the high-rise chimney structure, but also the vibration control performance, which requires detailed quantitative studies. A high-rise chimney is simplified as a generalized single degree of freedom structure. Based on the analog filter representation of wind load spectra, the analytical solution of wind-induced response of the structure under TMDI control is derived. Subsequently, a parametric analysis of TMDI optimal design parameters is performed. Corresponding empirical formulas are summarized for design reference. In addition, by comparing the control effect of TMDI and TMD, the criterion of enhancing the control effect of inerter and the formula of equivalent TMD mass ratio of the TMDI are given to guide the lightweight design of the dynamic vibration absorbers. Finally, the effectiveness of the theoretical analysis is validated by a numerical TMDI control example based on the wind tunnel test data of a concrete chimney of 270 m tall. The results show that TMDI can reduce the design wind load of high-rise chimney by more than 45% in the vortex induced resonance lock-in region.
-
Key words:
- high-rise structure /
- tuned mass damper inerter /
- wind-induced response /
- chimney /
- vibration control
-
表 1 风振控制计算工况阻尼器详细参数
Table 1. Detailed damper parameters of wind-induced vibration control cases
工况号参数 1 2 3 4 5 μ/(%) 1.000 1.000 1.000 1.000 1.000 β/(%) 0.000 20.000 20.000 20.000 20.000 φ − 0.900 0.750 0.500 0.000 ν 0.990 0.993 0.983 0.947 0.826 ζd/(%) 4.975 3.827 6.505 11.490 20.830 m/t 45.880 45.880 45.880 45.880 45.880 c/(kN·s/m) 11.210 181.700 305.600 520.200 822.900 k/(kN/m) 276.800 5848.100 5726.800 5319.300 4049.900 b/(kN·s2/m) 0.000 917.600 917.600 917.600 917.600 χ/m − 256 233 193 0 μe/(%) 1.0 − 2.25 6.0 21.0 表 2 典型风速下风振响应计算结果及误差
Table 2. Results and errors of wind-induced responses under typical wind speed cases
工况 U/UCr 方法 顺风向 横风向 σxa/D/(%) 误差/(%) σxc/D/(%) 误差/(%) 未控制 0.68 气弹试验 0.044 − 0.090 − 时域分析 0.045 2.0 0.095 5.9 本文方法 0.047 6.2 0.097 8.2 1.17 气弹试验 0.122 − 0.460 − 时域分析 0.125 2.3 0.474 3.1 本文方法 0.127 3.9 0.475 3.3 2.63 气弹试验 0.822 − 0.760 − 时域分析 0.827 0.6 0.762 0.2 本文方法 0.841 2.3 0.777 2.1 控制工况1 0.68 时域分析 0.032 − 0.070 − 本文方法 0.032 1.2 0.075 7.8 1.17 时域分析 0.084 − 0.326 − 本文方法 0.087 3.4 0.317 −2.8 2.63 时域分析 0.542 − 0.596 − 本文方法 0.545 0.5 0.597 0.2 控制工况2 0.68 时域分析 0.035 − 0.076 − 本文方法 0.035 1.5 0.083 8.7 1.17 时域分析 0.093 − 0.365 − 本文方法 0.097 3.5 0.355 −2.9 2.63 时域分析 0.613 − 0.651 − 本文方法 0.617 0.5 0.653 0.2 控制工况3 0.68 时域分析 0.030 − 0.065 − 本文方法 0.030 1.0 0.070 7.2 1.17 时域分析 0.078 − 0.300 − 本文方法 0.080 2.1 0.291 −2.7 2.63 时域分析 0.499 − 0.555 − 本文方法 0.502 0.5 0.556 0.2 控制工况4 0.68 时域分析 0.026 − 0.054 − 本文方法 0.027 0.4 0.057 6.2 1.17 时域分析 0.067 − 0.240 − 本文方法 0.069 2.9 0.234 −2.6 2.63 时域分析 0.408 − 0.458 − 本文方法 0.410 0.5 0.459 0.2 控制工况5 0.68 时域分析 0.024 − 0.042 − 本文方法 0.024 −0.3 0.044 5.5 1.17 时域分析 0.057 − 0.184 − 本文方法 0.059 2.7 0.179 −2.6 2.63 时域分析 0.329 − 0.357 − 本文方法 0.331 0.4 0.357 0.2 -
[1] SMITH M C. Synthesis of mechanical networks: The inerter [J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648 − 1662. doi: 10.1109/TAC.2002.803532 [2] MA R S, BI K M, HAO H. Inerter-based structural vibration control: A state-of-the-art review [J]. Engineering Structures, 2021, 243: 112655. doi: 10.1016/j.engstruct.2021.112655 [3] 罗一帆, 孙洪鑫, 王修勇. 电磁调谐双质阻尼器的H2 参数优化及对结构减震分析[J]. 工程力学, 2019, 36(4): 89 − 99. doi: 10.6052/j.issn.1000-4750.2018.01.0027LUO Yifan, SUN Hongxin, WANG Xiuyong. The H2 parametric optimization and structural vibration suppression of electromagnetic tuned mass-inerter dampers [J]. Engineering Mechanics, 2019, 36(4): 89 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0027 [4] DEN HARTOG J P. Mechanical vibrations [M]. 4th ed. New York: McGraw-Hill, 1956. [5] ASAMI T, NISHIHARA O, BAZ A M. Analytical solutions to H∞and H2 optimization of dynamic vibration absorbers attached to damped linear systems [J]. Journal of Vibration and Acoustics, 2002, 124: 284 − 295. doi: 10.1115/1.1456458 [6] 王宝顺, 何浩祥, 闫维明. 质量调谐-颗粒阻尼器复合减振体系的力学解析及优化分析[J]. 工程力学, 2021, 38(6): 191 − 208. doi: 10.6052/j.issn.1000-4750.2020.07.0463WANG Baoshun, HE Haoxiang, YAN Weiming. Analytical model and optimization analysis of combined damping system with TMD and particle damper [J]. Engineering Mechanics, 2021, 38(6): 191 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0463 [7] GAO H, KWOK K C S, SAMALI B. Optimization of tuned liquid column dampers [J]. Engineering Structures, 1997, 19(6): 476 − 486. doi: 10.1016/S0141-0296(96)00099-5 [8] DI MATTEO A, IACONO F L, NAVARRA G, et al. Direct evaluation of the equivalent linear damping for TLCD systems in random vibration for pre-design purposes [J]. International Journal of Non-Linear Mechanics, 2014, 63: 19 − 30. doi: 10.1016/j.ijnonlinmec.2014.03.009 [9] OLIVA M, BARONE G, NAVARRA G. Optimal design of nonlinear energy sinks for SDOF structures subjected to white noise base excitations [J]. Engineering Structures, 2017, 145(15): 135 − 152. [10] 刘艮, 陈贡发. 基于NES的空间桁架结构被动减振研究[J]. 工程力学, 2019, 36(4): 89 − 99. doi: 10.6052/j.issn.1000-4750.2019.10.0617LIU Gen, CHEN Gongfa. Passive vibration reduction of space truss structures based on NES [J]. Engineering Mechanics, 2019, 36(4): 89 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0617 [11] 陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 149 − 158. doi: 10.6052/j.issn.1000-4750.2018.01.0053CHEN Yangyang, CHEN Kai, TAN Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness [J]. Engineering Mechanics, 2019, 36(3): 149 − 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0053 [12] MARIAN L, GIARALIS A. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support excited structural systems [J]. Probabilistic Engineering Mechanics, 2014, 38: 156 − 164. doi: 10.1016/j.probengmech.2014.03.007 [13] PIETROSANTI D, DE ANGELIS M, BASILI M. Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI) [J]. Earthquake Engineering and Structural Dynamics, 2017, 46: 1367 − 1388. doi: 10.1002/eqe.2861 [14] DI MATTEO A, MASNATA C, PIRROTTA A. Simplified analytical solution for the optimal design of tuned mass damper inerter for base isolated structures [J]. Mechanical Systems and Signal Processing, 2019, 134: 106337. doi: 10.1016/j.ymssp.2019.106337 [15] GIARALIS A, TAFLANIDIS A A. Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria [J]. Structural Control and Health Monitoring, 2017, 25: e2082. [16] RUIZ R, TAFLANIDIS A A, GIARALIS A, et al. Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures [J]. Engineering Structures, 2018, 177: 836 − 850. doi: 10.1016/j.engstruct.2018.08.074 [17] 王钦华, 雷伟, 祝志文, 等. 单重和多重调谐质量惯容阻尼器控制连体超高层建筑风振响应比较研究[J]. 建筑结构学报, 2021, 42(4): 25 − 34.WANG Qinhua, LEI Wei, ZHU Zhiwen, et al. Comparison of mitigation effects on wind-induced response of connected super-high-rise buildings controlled by TMDI and MTMDI [J]. Journal of Building Structures, 2021, 42(4): 25 − 34. (in Chinese) [18] 雷伟. TMDI控制连体超高层建筑风振响应研究及其参数分析[D]. 汕头: 汕头大学, 2019: 63 − 65.LEI Wei. Study on TMDI controlling wind-induced vibration response of linked super high-rise buildings and its parameter analysis [D]. Shantou: Shantou University, 2019. (in Chinese) [19] XU K, BI K, HAN Q, et al. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study [J]. Engineering Structures, 2019, 182: 101 − 111. doi: 10.1016/j.engstruct.2018.12.067 [20] DAI J, XU Z D, GAI P P. Tuned mass-damper-inerter control of wind-induced vibration of flexible structures based on inerter location [J]. Engineering Structures, 2019, 199: 109585. doi: 10.1016/j.engstruct.2019.109585 [21] WANG Z, GIARALIS A. Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping [J]. Structural Control and Health Monitoring, 2021: e2756. doi: 10.1002/stc.2756 [22] SU N, CAO Z, WU Y. Fast frequency domain algorithm to estimate the dynamic wind-induced response on large-span roofs based on Cauchy’s residue theorem [J]. International Journal of Structural Stability and Dynamics, 2018, 18(3): 1850037. doi: 10.1142/S0219455418500372 [23] 苏宁, 基于风压谱的大跨屋盖结构抗风设计理论研究与应用 [D]. 哈尔滨: 哈尔滨工业大学, 2018.SU Ning. Research and application of wind-resistant design theories of large-span roof structures based on wind pressure spectra [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese) [24] CHOI H, KANDA J. Semi-empirical formulae for dynamic alongwind force estimation [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 1994, 59(463): 9 − 18. doi: 10.3130/aijs.59.9 [25] Structural Standards Committee, Architectural Institute of Japan (AIJ). Recommendations for loads on buildings [S]. Tokyo (Japan), 2015. [26] VICKERY B J, BASU R. Simplified approaches to the evaluation of the across-wind response of chimneys [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14(1 − 3): 153 − 166. doi: 10.1016/0167-6105(83)90019-3 [27] CHOI H, KANDA J. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46/47: 507 − 516. doi: 10.1016/0167-6105(93)90318-I [28] SPANOS P D, SUN Y, SU N. Advantages of filter approaches for the determination of wind-induced response of large-span roof structures [J]. Journal of Engineering Mechanics, 2017, 143(9): 04017066. doi: 10.1061/(ASCE)EM.1943-7889.0001261 [29] 高科. 港口高耸烟囱风荷载的风洞试验研究及中美规范对比[J]. 水道港口, 2020, 41(6): 675 − 681.GAO Ke. Wind tunnel study on wind load of port high-rise chimney and comparisons with China and US codes [J]. Journal of Waterway and Harbor, 2020, 41(6): 675 − 681. (in Chinese) [30] ASCE/SEI 7-16, Minimum design loads and associated criteria for buildings and other structures [S]. American Society of Civil Engineers, 2016. [31] ACI 307-08, Code Requirements for Reinforced Concrete Chimneys and Commentary [S]. American Concrete Institute, 2013. -