HYBRID FLOW CONTROL TECHNOLOGY BASED ON VARIABLE CAMBER AND CO-FLOW JET
-
摘要: 现代飞机强调高速巡航特性且兼顾隐身特性,因此翼型往往采用厚度较小,前缘半径不大,弯度不大的薄翼型。这类翼型的低速气动性能较差,容易失速,限制了这类飞机的短距起降特性和载重能力,因此需要借助流动控制技术来改善低速特性。该文讨论新型的协同射流主动流动控制技术,同变弯度技术包括后缘变弯和前缘下垂技术等被动流动控制技术相结合,探索混合流动控制技术的流动控制机理和控制效果。基于数值模拟的结果发现:仅采用单一的流动控制技术在薄翼型上得到的控制效果有限,而将协同射流同变弯度技术结合的混合流动控制技术可同时发挥不同流动控制技术的优点(例如协同射流引起的后缘失速的推迟,下垂前缘带来的前缘失速推迟,后缘襟翼带来的零升迎角减小)。该文提供的混合流动控制方案可以将薄翼型的最大升力系数提升至CLmax=3.3127,相对原始构型提升了96%,具有广阔的工程应用前景。Abstract: Modern aircraft emphasizes the characteristics of high-speed cruise and stealth. As a result, the airfoil used usually has a relatively small thickness, a small leading edge radius and less camber. The performance of such airfoils is poor, with early flow stall at a low speed condition, and resulting in the limitation of the STOL characteristic and weight-carrying capacity of the aircraft. Thus, it is necessary to improve the aerodynamic performance of airfoil by using active flow control or passive flow control. In this paper, the innovative co-flow jet (CFJ) technology is investigated, which is coupled with variable camber technology (including the trailing-edge flap and leading-edge droop) and flow mechanism, as well as control efficiency of so-called hybrid flow control approach. As shown by numerical simulation results, a single flow control technology cannot improve the lift of the thin airfoil substantially. Nevertheless, the combination of CFJ with variable camber technology could realize the advantages of both technologies (e.g. the delay of trailing edge stall induced by CFJ, the delay of leading edge stall caused by droop nose, the decrease of zero-lift angle induced by trailing edge flap, etc.). The combination scheme of CFJ and variable camber technology in this paper could yield the maximum lift coefficient of CLmax=3.3127, 96% higher than that of the original airfoil, implying that the hybrid flow control technology has valuable potential for aviation industry application.
-
Key words:
- trailing-edge variable chamber /
- droop /
- co-flow jet /
- hybrid flow control /
- thin airfoil
-
表 1 四种布局的基本几何信息
Table 1. basic geometrical information of four configurations
类型 几何特征 图中说明 无变弯度薄翼型 最大厚度11%c,
弯度小无变弯度薄翼型
(+协同射流)后缘变弯翼型 后缘襟翼偏转20°
控制面占15%c后缘变弯翼型
(+协同射流)头部下垂翼型 前缘下垂20°,
控制面占9%c头部下垂翼型
(+协同射流)下垂前缘配合
后缘变弯翼型综合后缘变弯和
头部下垂构型头部下垂翼型+
后缘变弯翼型
(+协同射流)表 2 四种布局的气动特性信息汇总
Table 2. Summary of the aerodynamic performance of four configurations
项目 失速机理 失速迎角/(°) 失速迎角增量/(°) 最大升力系数(CL,max) 相对基准翼型增量(∆CL) CFJ的升力增量 无变弯度薄翼型 无控制 后缘失速 17 0 1.6914 0.0000 0.8122 CFJ 前缘失速 22 5 2.5036 0.8122 后缘变弯翼型 无控制 后缘失速 15 −2 2.0564 0.3650 0.8219 CFJ 前缘失速 18 1 2.8783 1.1869 头部下垂翼型 无控制 后缘失速 18 1 1.8144 0.1230 1.0816 CFJ 后缘失速 28 11 2.8960 1.2046 下垂前缘配合后缘变弯翼型 无控制 后缘失速 18 1 2.3304 0.6390 0.9823 CFJ 后缘失速 24 7 3.3157 1.6243 -
[1] SPILLMAN J J. The use of variable camber to reduce drag, weight and costs of transport aircraft [J]. Aeronautical Journal, 1992, 96: 1 − 9. [2] 陆维爽, 田云, 刘沛清, 等. GAW-1翼型前后缘变弯度气动性能研究[J]. 航空学报, 2016, 37(2): 437 − 450.LU Weishuang, TIAN Yun, LIU Peiqing, et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 437 − 450. (in Chinese) [3] 郭同彪, 白俊强, 杨一雄. 机翼后缘连续变弯度对客机气动特性影响[J]. 北京航空航天大学学报, 2017, 43(8): 1559 − 1566.GUO Tongbiao, BAI Junqiang, YANG Yixiong. Influence of continuous trailing-edge variable camber wing on aerodynamic characteristics of airliner [J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1559 − 1566. (in Chinese) [4] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1): 46 − 53. doi: 10.3969/j.issn.0258-1825.2010.01.007CHEN Qian, BAI Peng, YIN Weilong, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge [J]. Acta Aerodynamica Sinica, 2010, 28(1): 46 − 53. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.01.007 [5] SINAPIUS M, MONNER H P, KINTSCHER M, et al. DLR's morphing wing activities within the European network [C]// The 23rd International Congress of Theoretical and Applied Mechanics, Beijing, China, August 19-24, 2012. [6] MAGRINI A, BENINI E. Aerodynamic optimization of a morphing leading edge airfoil with a constant arc length parameterization [J]. Journal of Aerospace Engineering, 2018, 31(2): 04017093. doi: 10.1061/(ASCE)AS.1943-5525.0000812 [7] RADESPIEL R, BURNAZZI M, CASPER M, et al. Active flow control for high lift with steady blowing [J]. The Aeronautical Journal, 2016, 120(1223): 171 − 200. doi: 10.1017/aer.2015.7 [8] 刘睿, 白俊强, 邱亚松, 等. 内吹式襟翼几何参数影响研究与优化设计[J]. 西北工业大学学报, 2020, 38(1): 58 − 67. doi: 10.3969/j.issn.1000-2758.2020.01.008LIU Rui, BAI Junqiang, QIU Yasong, et al. Effects of geometrical parameters of internal blown flap and its optimal design [J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 58 − 67. (in Chinese) doi: 10.3969/j.issn.1000-2758.2020.01.008 [9] WIERACH P, PETERSEN J, SINAPIUS M. Design and experimental characterization of an actuation system for flow control of an internally blown Coanda flap [J]. Aerospace, 2020, 7(3): 29 − 41. doi: 10.3390/aerospace7030029 [10] SEELE R, GRAFF E, GHARIB M, et al. Improving rudder effectiveness with sweeping jet actuators [C]// The 6th AIAA Flow Control Conference, New Orleans, USA, June 25-28, 2012. [11] ANDINO M Y, LIN J C, WASHBURN A E, et al. Flow separation control on a full-scale vertical tail model using sweeping jet actuators [C]// The 53rd AIAA Aerospace Sciences Meeting, Kissimmee, USA, January 5-9, 2015. [12] LIN J C, ANDINO M Y, ALEXANDER M G, et al. An overview of active flow control enhanced vertical tail technology development [C]// The 54th AIAA Aerospace Sciences Meeting, San Diego, USA, January 4-8, 2016. [13] XING S L, XU H Y, MA M S, et al. Inflatable leading edge based dynamic stall control considering fluid structure interaction [J]. International Journal of Aerospace Engineering, 2020, 2020(6): 1 − 28. [14] XING S L, XU H Y, YE Z Y, et al. Dynamic stall control using inflatable leading edge [J]. International Journal of Modern Physics B, 2020, 34: 2040108. doi: 10.1142/S0217979220401086 [15] ZHA G C, PAXTON C. A novel airfoil circulation augment flow control method using co-flow jet [C]// The 2nd AIAA Flow Control Conference, Portland, USA, June 28-July 1, 2004. [16] ZHA G C, CARROL B F, PAXTON C D, et al. High performance airfoil using co-flow jet flow control [C] // The 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, January 10-13, 2005. [17] 史子颉, 许和勇, 郭润杰, 等. 协同射流在垂直尾翼流动控制中的应用研究 [J/OL]. 航空工程进展, 2021.SHI Zijie, XU Heyong, GUO Runjie, et al. Application research of flow control using co-flow jet on a vertical tail [J/OL]. Advances in Aeronautical Science and Engineering, 2021. (in Chinese) [18] 高超, 贾娅娅, 刘庆宽. 相对厚度对翼型气动特性的影响研究[J]. 工程力学, 2020, 37(增刊): 380 − 386. doi: 10.6052/j.issn.1000-4750.2019.04.S062GAO Chao, JIA Yaya, LIU Qingkuan. Effect of relative thickness on aerodynamic performance of airfoil [J]. Engineering Mechanics, 2020, 37(Suppl): 380 − 386. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S062 [19] 李艺, 黄国庆, 程旭, 等. 移动型下击暴流及其作用下高层建筑风荷载的数值模拟[J]. 工程力学, 2020, 37(3): 176 − 187. doi: 10.6052/j.issn.1000-4750.2019.04.0231LI Yi, HUANG Guoqing, CHENG Xu, et al. The numerical simulation of moving downbursts and their induced wind load on high-rise buildings [J]. Engineering Mechanics, 2020, 37(3): 176 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0231 [20] 郑怡彤, 吴倩云, 贾娅娅, 等. 考虑周边建筑影响的大跨煤棚风荷载体型系数研究[J]. 工程力学, 2021, 38(增刊): 72 − 76. doi: 10.6052/j.issn.1000-4750.2020.05.S014ZHENG Yitong, WU Qianyun, JIA Yaya, et al. Study on shape factor of wind load of large-span coal shed considering the influence of surrounding buildings [J]. Engineering Mechanics, 2021, 38(Suppl): 72 − 76. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S014 [21] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C] // The 30th Aerospace Sciences Meeting and Exhibit, Reno, USA, January 6-9, 1992. [22] 聂胜阳, 王垠, 刘志强, 等. 基于S-A与SSG/LRR-ω两种湍流模型的CHN-T1标模计算与分析[J]. 空气动力学学报, 2019, 37(2): 310 − 319.NIE Shengyang, WANG Yin, LIU Zhiqiang, et al. Numerical investigation and discussion on CHN-TI benchmark model using Spalart-Allmaras model and SSG/LRR-ω model [J]. Acta Aerodynamica Sinica, 2019, 37(2): 310 − 319. (in Chinese) -