留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变弯度技术和协同射流的混合流动控制技术研究

陈诚 陈其盛 黄江涛 聂胜阳 张文琦 焦瑾

陈诚, 陈其盛, 黄江涛, 聂胜阳, 张文琦, 焦瑾. 基于变弯度技术和协同射流的混合流动控制技术研究[J]. 工程力学, 2022, 39(11): 245-256. doi: 10.6052/j.issn.1000-4750.2021.06.0479
引用本文: 陈诚, 陈其盛, 黄江涛, 聂胜阳, 张文琦, 焦瑾. 基于变弯度技术和协同射流的混合流动控制技术研究[J]. 工程力学, 2022, 39(11): 245-256. doi: 10.6052/j.issn.1000-4750.2021.06.0479
CHEN Cheng, CHEN Qi-sheng, HUANG Jiang-tao, NIE Sheng-yang, ZHANG Wen-qi, JIAO Jin. HYBRID FLOW CONTROL TECHNOLOGY BASED ON VARIABLE CAMBER AND CO-FLOW JET[J]. Engineering Mechanics, 2022, 39(11): 245-256. doi: 10.6052/j.issn.1000-4750.2021.06.0479
Citation: CHEN Cheng, CHEN Qi-sheng, HUANG Jiang-tao, NIE Sheng-yang, ZHANG Wen-qi, JIAO Jin. HYBRID FLOW CONTROL TECHNOLOGY BASED ON VARIABLE CAMBER AND CO-FLOW JET[J]. Engineering Mechanics, 2022, 39(11): 245-256. doi: 10.6052/j.issn.1000-4750.2021.06.0479

基于变弯度技术和协同射流的混合流动控制技术研究

doi: 10.6052/j.issn.1000-4750.2021.06.0479
基金项目: 国家自然科学基金青年项目(11402284, 11802234);陕西省自然科学基金青年项目(2019JQ-912)
详细信息
    作者简介:

    陈 诚(1984−),男,安徽人,助理研究员,博士,主要从事航空飞行器设计研究(E-mail: ustc_chen198406@126.com)

    陈其盛(1990−),男,湖南人,工程师,硕士,主要从事航空飞行器设计研究(E-mail: chensheng_atp@126.com)

    黄江涛(1982−),男,河南人,研究员,博士,主要从事航空飞行器设计研究(E-mail: hjtcyf@163.com)

    张文琦(1998−),男,山东人,硕士生,主要从事主动流动控制技术研究(E-mail: 503826149@qq.com)

    焦 瑾(1988−),女,陕西人,讲师,博士,主要从事计算流体力学、航空声学研究(E-mail: jin.jiao@hotmail.com)

    通讯作者:

    聂胜阳(1986−),男,河南人,讲师,博士,主要从事主动流动控制技术、湍流\转捩模型建模研究(E-mail: niesynpu@hotmail.com)

  • 中图分类号: V211.4

HYBRID FLOW CONTROL TECHNOLOGY BASED ON VARIABLE CAMBER AND CO-FLOW JET

  • 摘要: 现代飞机强调高速巡航特性且兼顾隐身特性,因此翼型往往采用厚度较小,前缘半径不大,弯度不大的薄翼型。这类翼型的低速气动性能较差,容易失速,限制了这类飞机的短距起降特性和载重能力,因此需要借助流动控制技术来改善低速特性。该文讨论新型的协同射流主动流动控制技术,同变弯度技术包括后缘变弯和前缘下垂技术等被动流动控制技术相结合,探索混合流动控制技术的流动控制机理和控制效果。基于数值模拟的结果发现:仅采用单一的流动控制技术在薄翼型上得到的控制效果有限,而将协同射流同变弯度技术结合的混合流动控制技术可同时发挥不同流动控制技术的优点(例如协同射流引起的后缘失速的推迟,下垂前缘带来的前缘失速推迟,后缘襟翼带来的零升迎角减小)。该文提供的混合流动控制方案可以将薄翼型的最大升力系数提升至CLmax=3.3127,相对原始构型提升了96%,具有广阔的工程应用前景。
  • 图  1  协同射流装置的布置方式示意图

    Figure  1.  Sketch of the co-flow jet in airfoil

    图  2  无协同射流构型计算网格拓扑图

    Figure  2.  Grid for configurations without co-flow jet

    图  3  协同射流构型的计算网格拓扑图

    Figure  3.  Grid for configurations with co-flow jet

    图  4  有无协同射流时的高雷诺数薄翼型上力系数的比较

    Figure  4.  Force coefficient of airfoils with/without co-flow jet at high Reynolds number

    图  5  攻角为20°时有无协同射流时的压力分布云图和空间流线

    Figure  5.  Pressure coefficient distributions and streamlines of flow with/without co-flow jet at α=20°

    图  6  攻角为25°时协同射流翼型上的前缘分离(上)和马赫数云图(下)

    Figure  6.  Leading edge separation (Up) and Mach number counters (Down) of airfoil with co-flow jet at α=25°

    图  7  无弯度构型和后缘变弯构型的力系数比较

    Figure  7.  Force coefficients of airfoils with/without trailing-edge variable camber at high Reynolds number

    图  8  后缘变弯无协同射流构型在12°(上)和16°(下)的压力分布云图和空间流线图

    Figure  8.  Pressure coefficient counters and streamlines at α = 12° (Up) and 16° (Down) of airfoil with trailing edge variable camber without co-flow jets

    图  9  后缘变弯协同射流构型在12°(上)和16°(下)的压力分布云图和空间流线图

    Figure  9.  Pressure coefficient counters and streamlines at α=12° (Up) and 16° (Down) of airfoil with trailing edge variable camber with co-flow jets

    图  10  攻角为20°时协同射流后缘变弯翼型上的前缘分离(上)和马赫数云图(下)

    Figure  10.  leading edge separation (Up) and Mach number counters (Down) of airfoil with trailing-edge variable camber and co-flow jet at α=20°

    图  11  无变弯构型和前缘下垂构型的气动力系数比较

    Figure  11.  Force coefficient of airfoils with/without droop at high Reynolds number

    图  12  攻角为18°(上)和22°(下)时前缘下垂构型上的分离和尾迹涡

    Figure  12.  Mach number counters and streamlines at α=18° (Up) and 22° (Down) of airfoil with droop

    图  13  攻角为18°(上)和22°(下)时前缘下垂、协同射流构型上的分离和尾迹涡

    Figure  13.  Mach number counters and streamlines at α=18° (Up) and 22° (Down) of airfoil with droop and co-flow jet

    图  14  攻角为28°(上)和30°(下)时前缘下垂、协同射流构型上的分离和尾迹涡

    Figure  14.  Mach number counters and streamlines at α =28° (Up) and 30° (Down) of airfoil with droop and co-flow jet

    图  15  无变弯构型和前缘下垂+后缘变弯的力系数比较

    Figure  15.  Force coefficient of airfoils with/without droop and flap deflection at high Reynolds number

    16  不同攻角下有无协同射流时的马赫数分布云图和空间流线

    16.  Mach number counters and streamlines at different angle of attack of airfoil with/without co-flow jet

    图  17  失速攻角附近的协同射流构型上的马赫数分布云图和空间流线

    Figure  17.  Mach number counters and streamlines of flow at stall with co-flow jet

    表  1  四种布局的基本几何信息

    Table  1.   basic geometrical information of four configurations

    类型几何特征图中说明
    无变弯度薄翼型 最大厚度11%c
    弯度小
    无变弯度薄翼型
    (+协同射流)
    后缘变弯翼型 后缘襟翼偏转20°
    控制面占15%c
    后缘变弯翼型
    (+协同射流)
    头部下垂翼型 前缘下垂20°,
    控制面占9%c
    头部下垂翼型
    (+协同射流)
    下垂前缘配合
    后缘变弯翼型
    综合后缘变弯和
    头部下垂构型
    头部下垂翼型+
    后缘变弯翼型
    (+协同射流)
    下载: 导出CSV

    表  2  四种布局的气动特性信息汇总

    Table  2.   Summary of the aerodynamic performance of four configurations

    项目失速机理失速迎角/(°)失速迎角增量/(°)最大升力系数(CL,max)相对基准翼型增量(∆CL)CFJ的升力增量
    无变弯度薄翼型无控制后缘失速1701.69140.00000.8122
    CFJ前缘失速2252.50360.8122
    后缘变弯翼型无控制后缘失速15−22.05640.36500.8219
    CFJ前缘失速1812.87831.1869
    头部下垂翼型无控制后缘失速1811.81440.12301.0816
    CFJ后缘失速28112.89601.2046
    下垂前缘配合后缘变弯翼型无控制后缘失速1812.33040.63900.9823
    CFJ后缘失速2473.31571.6243
    下载: 导出CSV
  • [1] SPILLMAN J J. The use of variable camber to reduce drag, weight and costs of transport aircraft [J]. Aeronautical Journal, 1992, 96: 1 − 9.
    [2] 陆维爽, 田云, 刘沛清, 等. GAW-1翼型前后缘变弯度气动性能研究[J]. 航空学报, 2016, 37(2): 437 − 450.

    LU Weishuang, TIAN Yun, LIU Peiqing, et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 437 − 450. (in Chinese)
    [3] 郭同彪, 白俊强, 杨一雄. 机翼后缘连续变弯度对客机气动特性影响[J]. 北京航空航天大学学报, 2017, 43(8): 1559 − 1566.

    GUO Tongbiao, BAI Junqiang, YANG Yixiong. Influence of continuous trailing-edge variable camber wing on aerodynamic characteristics of airliner [J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1559 − 1566. (in Chinese)
    [4] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1): 46 − 53. doi: 10.3969/j.issn.0258-1825.2010.01.007

    CHEN Qian, BAI Peng, YIN Weilong, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge [J]. Acta Aerodynamica Sinica, 2010, 28(1): 46 − 53. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.01.007
    [5] SINAPIUS M, MONNER H P, KINTSCHER M, et al. DLR's morphing wing activities within the European network [C]// The 23rd International Congress of Theoretical and Applied Mechanics, Beijing, China, August 19-24, 2012.
    [6] MAGRINI A, BENINI E. Aerodynamic optimization of a morphing leading edge airfoil with a constant arc length parameterization [J]. Journal of Aerospace Engineering, 2018, 31(2): 04017093. doi: 10.1061/(ASCE)AS.1943-5525.0000812
    [7] RADESPIEL R, BURNAZZI M, CASPER M, et al. Active flow control for high lift with steady blowing [J]. The Aeronautical Journal, 2016, 120(1223): 171 − 200. doi: 10.1017/aer.2015.7
    [8] 刘睿, 白俊强, 邱亚松, 等. 内吹式襟翼几何参数影响研究与优化设计[J]. 西北工业大学学报, 2020, 38(1): 58 − 67. doi: 10.3969/j.issn.1000-2758.2020.01.008

    LIU Rui, BAI Junqiang, QIU Yasong, et al. Effects of geometrical parameters of internal blown flap and its optimal design [J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 58 − 67. (in Chinese) doi: 10.3969/j.issn.1000-2758.2020.01.008
    [9] WIERACH P, PETERSEN J, SINAPIUS M. Design and experimental characterization of an actuation system for flow control of an internally blown Coanda flap [J]. Aerospace, 2020, 7(3): 29 − 41. doi: 10.3390/aerospace7030029
    [10] SEELE R, GRAFF E, GHARIB M, et al. Improving rudder effectiveness with sweeping jet actuators [C]// The 6th AIAA Flow Control Conference, New Orleans, USA, June 25-28, 2012.
    [11] ANDINO M Y, LIN J C, WASHBURN A E, et al. Flow separation control on a full-scale vertical tail model using sweeping jet actuators [C]// The 53rd AIAA Aerospace Sciences Meeting, Kissimmee, USA, January 5-9, 2015.
    [12] LIN J C, ANDINO M Y, ALEXANDER M G, et al. An overview of active flow control enhanced vertical tail technology development [C]// The 54th AIAA Aerospace Sciences Meeting, San Diego, USA, January 4-8, 2016.
    [13] XING S L, XU H Y, MA M S, et al. Inflatable leading edge based dynamic stall control considering fluid structure interaction [J]. International Journal of Aerospace Engineering, 2020, 2020(6): 1 − 28.
    [14] XING S L, XU H Y, YE Z Y, et al. Dynamic stall control using inflatable leading edge [J]. International Journal of Modern Physics B, 2020, 34: 2040108. doi: 10.1142/S0217979220401086
    [15] ZHA G C, PAXTON C. A novel airfoil circulation augment flow control method using co-flow jet [C]// The 2nd AIAA Flow Control Conference, Portland, USA, June 28-July 1, 2004.
    [16] ZHA G C, CARROL B F, PAXTON C D, et al. High performance airfoil using co-flow jet flow control [C] // The 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, January 10-13, 2005.
    [17] 史子颉, 许和勇, 郭润杰, 等. 协同射流在垂直尾翼流动控制中的应用研究 [J/OL]. 航空工程进展, 2021.

    SHI Zijie, XU Heyong, GUO Runjie, et al. Application research of flow control using co-flow jet on a vertical tail [J/OL]. Advances in Aeronautical Science and Engineering, 2021. (in Chinese)
    [18] 高超, 贾娅娅, 刘庆宽. 相对厚度对翼型气动特性的影响研究[J]. 工程力学, 2020, 37(增刊): 380 − 386. doi: 10.6052/j.issn.1000-4750.2019.04.S062

    GAO Chao, JIA Yaya, LIU Qingkuan. Effect of relative thickness on aerodynamic performance of airfoil [J]. Engineering Mechanics, 2020, 37(Suppl): 380 − 386. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S062
    [19] 李艺, 黄国庆, 程旭, 等. 移动型下击暴流及其作用下高层建筑风荷载的数值模拟[J]. 工程力学, 2020, 37(3): 176 − 187. doi: 10.6052/j.issn.1000-4750.2019.04.0231

    LI Yi, HUANG Guoqing, CHENG Xu, et al. The numerical simulation of moving downbursts and their induced wind load on high-rise buildings [J]. Engineering Mechanics, 2020, 37(3): 176 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0231
    [20] 郑怡彤, 吴倩云, 贾娅娅, 等. 考虑周边建筑影响的大跨煤棚风荷载体型系数研究[J]. 工程力学, 2021, 38(增刊): 72 − 76. doi: 10.6052/j.issn.1000-4750.2020.05.S014

    ZHENG Yitong, WU Qianyun, JIA Yaya, et al. Study on shape factor of wind load of large-span coal shed considering the influence of surrounding buildings [J]. Engineering Mechanics, 2021, 38(Suppl): 72 − 76. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S014
    [21] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C] // The 30th Aerospace Sciences Meeting and Exhibit, Reno, USA, January 6-9, 1992.
    [22] 聂胜阳, 王垠, 刘志强, 等. 基于S-A与SSG/LRR-ω两种湍流模型的CHN-T1标模计算与分析[J]. 空气动力学学报, 2019, 37(2): 310 − 319.

    NIE Shengyang, WANG Yin, LIU Zhiqiang, et al. Numerical investigation and discussion on CHN-TI benchmark model using Spalart-Allmaras model and SSG/LRR-ω model [J]. Acta Aerodynamica Sinica, 2019, 37(2): 310 − 319. (in Chinese)
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  152
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 录用日期:  2021-12-14
  • 修回日期:  2021-12-06
  • 网络出版日期:  2021-12-14
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回