[1] |
陈龙, 黄天立. 基于贝叶斯更新和逆高斯过程的在役钢筋混凝土桥梁构件可靠度动态预测方法[J]. 工程力学, 2020, 37(4): 195 − 204. doi: 10.6052/j.issn.1000-4750.2019.05.0273CHEN Long, HUANG Tianli. Dynamic prediction of reliability of in-service RC bridges using the Bayesian updating and inverse Gaussian process [J]. Engineering Mechanics, 2020, 37(4): 195 − 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0273
|
[2] |
李杰, 陈建兵. 随机结构非线性动力响应的概率密度演化分析[J]. 力学学报, 2003, 35(6): 716 − 722. doi: 10.3321/j.issn:0459-1879.2003.06.009LI Jie, CHEN Jianbing. The probability density evolution method for analysis of dynamic nonlinear response of stochastic structures [J]. Acta Mechanica Sinica, 2003, 35(6): 716 − 722. (in Chinese) doi: 10.3321/j.issn:0459-1879.2003.06.009
|
[3] |
李杰, 陈建兵. 随机结构动力反应分析的概率密度演化方法[J]. 力学学报, 2003, 35(4): 437 − 442. doi: 10.3321/j.issn:0459-1879.2003.04.008LI Jie, CHEN Jianbing. Probability density evolution method for analysis of stochastic structural dynamic response [J]. Acta Mechanica Sinica, 2003, 35(4): 437 − 442. (in Chinese) doi: 10.3321/j.issn:0459-1879.2003.04.008
|
[4] |
WANG W J, FENG J H, XU W. The numerical solution of the TVD runge-kutta and WENO scheme to the FPK equations to nonlinear system of one-dimension [J]. Applied and Computational Mathematics, 2016, 5(3): 160 − 164. doi: 10.11648/j.acm.20160503.20
|
[5] |
BERTRAND F, BOFFFI D, DIDGO G. Convergence analysis of the scaled boundary finite element method for the Laplace equation [J]. Advances in Computational Mathematics, 2021, 47(3): 34 − 50. doi: 10.1007/s10444-021-09852-z
|
[6] |
ZHU H T, DUAN L L. Probabilistic solution of non-linear random ship roll motion by path integration [J]. International Journal of Non-Linear Mechanics, 2016, 83: 1 − 8. doi: 10.1016/j.ijnonlinmec.2016.03.010
|
[7] |
LEONENKO G M, PHILLIPS T N. Numerical approximation of high-dimensional Fokker–Planck equations with polynomial coefficients [J]. Journal of Computational and Applied Mathematics, 2015, 273: 296 − 312. doi: 10.1016/j.cam.2014.05.024
|
[8] |
MIRZAEE F, REZAEI S, SAMADYAR N. Numerical solution of two-dimensional stochastic time-fractional Sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods [J]. Engineering Analysis with Boundary Elements, 2021, 127: 53 − 63. doi: 10.1016/j.enganabound.2021.03.009
|
[9] |
LI J, CHEN J B. Stochastic dynamics of structures [M]. United States of America: John Wiley and Sons (Asia) Pte Ltd, 2010.
|
[10] |
李杰, 陈建兵. 随机结构动力可靠度分析的概率密度演化方法[J]. 振动工程学报, 2004, 17(2): 121 − 125. doi: 10.3969/j.issn.1004-4523.2004.02.001LI Jie, CHEN Jianbing. Probability density evolution method for dynamic reliability analysis of stochastic structures [J]. Journal of Vibration Engineering, 2004, 17(2): 121 − 125. (in Chinese) doi: 10.3969/j.issn.1004-4523.2004.02.001
|
[11] |
LI J, CHEN J B. The number theoretical method in response analysis of nonlinear stochastic structures [J]. Computational Mechanics, 2006, 39(6): 693 − 708.
|
[12] |
CHEN J B, LI J. Strategy for selecting representative points via tangent spheres in the probability density evolution method [J]. International Journal for Numerical Methods in Engineering, 2010, 74(13): 1988 − 2014.
|
[13] |
YU Z W, MAO J F. A stochastic dynamic model of train-track-bridge coupled system based on probability density evolution method [J]. Applied Mathematical Modelling, 2018, 59: 205 − 232. doi: 10.1016/j.apm.2018.01.038
|
[14] |
XU L, ZHAI W M, GAO J M. A probabilistic model for track random irregularities in vehicle/track coupled dynamics [J]. Applied Mathematical Modelling, 2017, 51: 145 − 158. doi: 10.1016/j.apm.2017.06.027
|
[15] |
刘颖. 一维双曲守恒律方程的高精度GDQ方法[D]. 长沙: 国防科学技术大学, 2006.LIU Ying. High accuracy GDQ method for one dimension hyperbolic conservation equation [D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
|
[16] |
余志武, 毛建锋, 谈遂, 等. 车桥竖向随机振动的概率密度演化分析[J]. 中南大学学报(自然科学版), 2015, 46(4): 1420 − 1427.YU Zhiwu, MAO Jianfeng, TAN Sui, et al. Probability density evolution analysis of track-bridge vertical coupled vibration with irregularity random excitation [J]. Journal of Central South University (Science and Technology), 2015, 46(4): 1420 − 1427. (in Chinese)
|
[17] |
XIAO X, YAN Y, CHEN B. Stochastic dynamic analysis for vehicle-track-bridge system based on probability density evolution method [J]. Engineering Structures, 2019, 188: 745 − 761. doi: 10.1016/j.engstruct.2019.02.042
|
[18] |
石晟, 杜东升, 王曙光, 等. 概率密度演化方程TVD格式的自适应时间步长技术及其初值条件改进[J]. 力学学报, 2019, 51(4): 1223 − 1234. doi: 10.6052/0459-1879-18-446SHI Sheng, DU Dongsheng, WANG Shuguang, et al. Non-uniform time step TVD scheme for probability density evolution function with improvement of initial condition [J]. Acta Mechanica Sinica, 2019, 51(4): 1223 − 1234. (in Chinese) doi: 10.6052/0459-1879-18-446
|
[19] |
LI H Y, YU Z W, MAO J F, et al. Nonlinear random seismic analysis of 3D high-speed railway track-bridge system based on OpenSEES [J]. Structures, 2020, 24: 87 − 98. doi: 10.1016/j.istruc.2020.01.003
|
[20] |
申家旭, 陈隽, 丁国. 基于Copula理论的序列型地震动随机模型[J]. 工程力学, 2021, 38(1): 27 − 39. doi: 10.6052/j.issn.1000-4750.2020.03.0128SHEN Jiaxu, CHEN Jun, DING Guo. A stochastic model for sequential ground motions based on the copula theory [J]. Engineering Mechanics, 2021, 38(1): 27 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0128
|
[21] |
马蒙, 李明航, 谭新宇, 等. 地铁轮轨耦合不平顺激励对轨道振动影响分析[J]. 工程力学, 2021, 38(5): 191 − 198. doi: 10.6052/j.issn.1000-4750.2020.06.0421MA Meng, LI Minghang, TAN Xinyu, et al. Influence analysis on track vibration due to coupled irregularity excitation of metro wheel-track [J]. Engineering Mechanics, 2021, 38(5): 191 − 198. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0421
|
[22] |
LIU Z, LIU Z J, HE C G, et al. Dimension-reduced probabilistic approach of 3-D wind field for wind-induced response analysis of transmission tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 309 − 321. doi: 10.1016/j.jweia.2019.05.013
|
[23] |
LI J, CHEN J B, FAN W L. The equivalent extreme-value event and evaluation of the structural system reliability [J]. Structural Safety, 2007, 29(2): 112 − 131. doi: 10.1016/j.strusafe.2006.03.002
|