留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含间隙非线性的惯容橡胶复合隔振系统可靠性分析

孟非凡 郭秀秀 史庆轩

孟非凡, 郭秀秀, 史庆轩. 含间隙非线性的惯容橡胶复合隔振系统可靠性分析[J]. 工程力学, 2022, 39(11): 133-142, 165. doi: 10.6052/j.issn.1000-4750.2021.06.0472
引用本文: 孟非凡, 郭秀秀, 史庆轩. 含间隙非线性的惯容橡胶复合隔振系统可靠性分析[J]. 工程力学, 2022, 39(11): 133-142, 165. doi: 10.6052/j.issn.1000-4750.2021.06.0472
MENG Fei-fan, GUO Siu-siu, SHI Qing-xuan. RELIABILITY ANALYSIS OF INERTER-RUBBER VIBRATION ISOLATOR SYSTEM WITH GAP NONLINEARITY[J]. Engineering Mechanics, 2022, 39(11): 133-142, 165. doi: 10.6052/j.issn.1000-4750.2021.06.0472
Citation: MENG Fei-fan, GUO Siu-siu, SHI Qing-xuan. RELIABILITY ANALYSIS OF INERTER-RUBBER VIBRATION ISOLATOR SYSTEM WITH GAP NONLINEARITY[J]. Engineering Mechanics, 2022, 39(11): 133-142, 165. doi: 10.6052/j.issn.1000-4750.2021.06.0472

含间隙非线性的惯容橡胶复合隔振系统可靠性分析

doi: 10.6052/j.issn.1000-4750.2021.06.0472
基金项目: 国家自然科学基金项目(11972273,51878540)
详细信息
    作者简介:

    孟非凡(1992−),男,安徽人,博士生,主要从事随机振动研究(E-mail: frankiemonet@163.com)

    郭秀秀(1985−),女,山西人,教授,博士,主要从事随机振动研究(E-mail: siusiuguo@hotmail.com)

    通讯作者:

    史庆轩(1963−),男,山东人,教授,博士,院长,主要从事高层结构抗震方面的研究(E-mail: shiqx@xauat.edu.cn)

  • 中图分类号: O324

RELIABILITY ANALYSIS OF INERTER-RUBBER VIBRATION ISOLATOR SYSTEM WITH GAP NONLINEARITY

  • 摘要: 大多数惯容系统的研究未考虑间隙非线性的影响,有研究表明,大间隙的产生对系统响应的影响不可忽略。该文建立了含间隙非线性的惯容-橡胶复合隔振系统的随机微分方程,基于随机非线性分析方法,推导了系统响应的统计矩,计算了系统响应的概率密度函数,利用首超可靠性分析理论求得了系统的失效概率,并分析了间隙对系统响应的统计特性及可靠性的影响。同时,也考虑了非平稳激励下间隙非线性对系统响应及可靠性的影响。结果表明,间隙值变大时,系统响应的统计矩变大,概率密度函数曲线快速发散,系统的失效概率迅速增加,这与确定性分析得到的结果不同,在设计隔振器时应当考虑间隙对系统动力可靠性的影响。
  • 图  1  一种惯容-橡胶复合隔振器示意图

    Figure  1.  Schematic diagram of an inertial-rubber vibration isolator

    图  2  间隙元件

    Figure  2.  The gap element

    图  3  含间隙的并联式Ⅱ型ISD隔振系统

    Figure  3.  The parallel type II ISD vibration isolation system with gap element

    图  4  平稳高斯白噪声激励下系统响应的统计矩

    Figure  4.  Statistical moments of system responses under stationary Gaussian white noise

    图  5  平稳高斯白噪声激励下系统位移响应的概率密度函数

    Figure  5.  The PDF curves of displacement response of system under stationary Gaussian white noise

    图  6  平稳高斯白噪声激励下系统的失效概率

    Figure  6.  The failure probability of system under stationary Gaussian white noise

    图  7  平稳高斯白噪声激励下系统响应统计矩与间隙的关系图

    Figure  7.  Relationships between statistical moments of system responses and gap under stationary Gaussian white noise excitation

    图  8  平稳高斯白噪声激励下系统响应概率密度函数与间隙的关系图

    Figure  8.  Relationships between the PDFs of system response and gap under stationary Gaussian white noise excitation

    图  9  平稳高斯白噪声激励下系统的失效概率与间隙的关系图

    Figure  9.  Relationships between the failure probability of system and gap under stationary Gaussian white noise excitation

    图  10  非平稳高斯激励下系统响应的统计矩

    Figure  10.  Statistical moments of system responses under nonstationary Gaussian white noise

    图  11  非平稳高斯白噪声激励下系统位移响应的概率密度函数

    Figure  11.  The PDF curves of displacement response of system under nonstationary Gaussian white noise

    图  12  非平稳高斯白噪声激励下系统的失效概率

    Figure  12.  The failure probability of system under nonstationary Gaussian white noise

    图  13  非平稳高斯白噪声激励下系统响应统计矩与间隙的关系图

    Figure  13.  Relationships between statistical moments of system responses and gap under nonstationary Gaussian white noise excitation

    图  14  非平稳高斯白噪声激励下系统响应概率密度函数与间隙的关系图

    Figure  14.  Relationships between the PDFs of system response and gap under nonstationary Gaussian white noise excitation

    图  15  非平稳高斯白噪声激励下系统的失效概率与间隙的关系图

    Figure  15.  Relationships between the failure probability of system and gap under nonstationary Gaussian white noise excitation

  • [1] SMITH M C. Synthesis of mechanical networks: the inerter [J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648 − 1662. doi: 10.1109/TAC.2002.803532
    [2] WANG F C, HONG M F, LIN T C. Design and testing a hydraulic inerter [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(1): 66 − 72. doi: 10.1243/09544062JMES2199
    [3] HUA X, TAI Y, HUANG Z, et al. Optimal design and performance evaluation of a novel hysteretic friction tuned inerter damper for vibration control systems [J]. Structural Control and Health Monitoring, 2021, 28(8): e2775 − e2775.
    [4] 赵志鹏, 张瑞甫, 陈清军, 等. 基于减震比设计方法的惯容减震结构分析[J]. 工程力学, 2019, 36(增刊 1): 125 − 130. doi: 10.6052/j.issn.1000-4750.2018.05.S022

    ZHAO Zhipeng, ZHANG Ruifu, CHEN Qingjun, et al. Analysis of structures with inerter systems based on the response mitigation ratio design method [J]. Engineering Mechanics, 2019, 36(Suppl 1): 125 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S022
    [5] LEWIS T D, JIANG J Z, NEILD S A, et al. Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles [J]. Vehicle System Dynamics, 2019, 58(1): 1 − 22.
    [6] LI Y, JIANG J Z, NEILD S A, et al. Optimal inerter-based shock–strut configurations for landing-gear touchdown performance [J]. Journal of Aircraft, 2017, 54(5): 1901 − 1909. doi: 10.2514/1.C034276
    [7] 黄绪宏, 许维炳, 王瑾, 等. 考虑惯容的颗粒阻尼器等效力学模型及其受控结构稳态解研究[J]. 工程力学, 2021, 38(4): 136 − 149. doi: 10.6052/j.issn.1000-4750.2020.06.0359

    HUANG Xuhong, XU Weibing, WANG Jin, et al. Equivalent model of multi-particle damper considering inerter and steady-state solution of controlled structure [J]. Engineering Mechanics, 2021, 38(4): 136 − 149. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0359
    [8] WANG F C, HONG M F, CHEN C W, et al. Building suspensions with inerters [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(8): 1605 − 1616. doi: 10.1243/09544062JMES1909
    [9] 刘德稳, 招继炳, 周旺旺, 等. 附加惯容器的层间隔震系统简化分析及地震响应研究[J]. 工程力学, 2022, 39(1): 188 − 196. doi: 10.6052/j.issn.1000-4750.2021.02.0147

    LIU Dewen, ZHAO Jibing, ZHOU Wangwang, et al. Simplified analysis and seismic response of inter-story isolation systems with an attached inerter [J]. Engineering Mechanics, 2022, 39(1): 188 − 196. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0147
    [10] 李宇飞, 白俊强, 刘南, 等. 间隙非线性对二元翼段颤振特性影响[J]. 哈尔滨工程大学学报, 2019, 40(4): 730 − 737.

    LI Yufei, BAI Junqiang, LIU Nan, et al. Analysis of aeroelastic characteristics of 2-D wing with free play [J]. Journal of Harbin Engineering University, 2019, 40(4): 730 − 737. (in Chinese)
    [11] LYU C, ZHANG J, LI Y, et al. Synthesis of a hybrid-observer-based active controller for compensating powetrain backlash nonlinearity of an electric vehicle during regenerative braking [J]. Sae International Journal of Alternative Powertrains, 2015, 4(1): 190 − 198. doi: 10.4271/2015-01-1225
    [12] BLANKENSHIP W, KAHRAMAN A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type nonlinearity [J]. Sound Vibration, 1995, 185: 743 − 765. doi: 10.1006/jsvi.1995.0416
    [13] 李阳, 温华兵, 刘伟, 等. 间隙非线性对惯容-橡胶复合隔振器位移响应的影响研究[J]. 振动与冲击, 2020, 39(17): 268 − 274.

    LI Yang, WEN Huabing, LIU Wei, et al. Effects of gap nonlinearity on displacement response of inerter-rubber vibration isolator [J]. Journal of Vibration and Shock, 2020, 39(17): 268 − 274. (in Chinese)
    [14] TOOTKABONI M, GRAHAM-BRADY L. Stochastic direct integration schemes for dynamic systems subjected to random excitations [J]. Probabilistic Engineering Mechanics, 2010, 25(2): 163 − 171. doi: 10.1016/j.probengmech.2009.10.001
    [15] KOUGIOUMTZOGLOU I A, SPANOS P D. Nonlinear MDOF system stochastic response determination via a dimension reduction approach [J]. Computers & Structures, 2013, 126: 135 − 148.
    [16] WANG Z, LOW Y M, LI B. Stochastic analysis of the non-Gaussian airgap response of a semi-submersible using frequency domain analysis [J]. Marine Structures, 2019, 67: 1 − 24.
    [17] 潘超, 张瑞甫, 王超, 等. 单自由度混联Ⅱ型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129 − 137, 145. doi: 10.6052/j.issn.1000-4750.2017.11.0809

    PAN Chao, ZHANG Ruifu, WANG Chao, et al. Stochastic seismic response and design of structural system with series-parallel-II inerter system [J]. Engineering Mechanics, 2019, 36(1): 129 − 137, 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0809
    [18] BROCCARDO M, DER KIUREGHIAN A. Nonlinear stochastic dynamic analysis by evolutionary tail-equivalent linearization method [J]. Structural Safety, 2021, 90: 1 − 13.
    [19] CAUGHEY T K. Response of a nonlinear string to random loading [J]. Journal of Applied Mechanics, 1959, 263: 341 − 344.
    [20] 郭秀秀, 李长宇, 史庆轩. 基于改进Bouc-Wen模型的非线性结构非平稳随机地震响应分析[J]. 振动与冲击, 2020, 39(18): 248 − 254, 268.

    GUO Siusiu, LI Changyu, SHI Qingxuan. Non-stationary stochastic seismic response analysis of a non-linear structure based on an improved Bouc-Wen model [J]. Journal of Vibration and Shock, 2020, 39(18): 248 − 254, 268. (in Chinese)
    [21] ZHENG Z B, DAI H Z. A new fractional equivalent linearization method for nonlinear stochastic dynamic analysis [J]. Nonlinear Dynamics, 2017, 91(2): 1075 − 1084.
    [22] HE X, IGARASHI A. Efficient design parameter selection for nonlinear bearings to achieve multi-objective optimization of seismic performance of girder bridges by utilizing the stochastic structural response of equivalent linear systems [J]. Bulletin of Earthquake Engineering, 2021, 19 (14): 1 − 30.
    [23] 温华兵, 郭俊华, 吕钰, 等. 一种具有宽频减振性能的惯容与橡胶复合减振器. 201510849097.8 [P]. 2015-11-27.

    WEN Huabing, GUO Junhua, LÜ Yu, et al. An inerter-rubber vibration reduction with broadband. 201510849097.8 [P]. 2015-11-27.
    [24] IYENGAR R N, IYENGAR K T R. A nonstationary random process model for earthquake accelerograms [J]. Bulletin of The Seismological Society of America, 1969, 59(3): 1163 − 1188.
    [25] GUO S S, SHI Q, XU Z D. Nonstationary seismic responses of nonlinear structural systems to modulated earthquake excitations [J]. Journal of Engineering Mechanics, 2019, 145(12): 1 − 12.
  • 加载中
图(17)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  64
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-23
  • 修回日期:  2021-09-02
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回