EXPERIMENTAL STUDY ON INTERFACIAL BONDING PERFORMANCE OF REACTIVE POWDER CONCRETE STRENGTHENED WITH BAR MESH
-
摘要: 针对现有混凝土加固技术导致的耐久性弱、承载力低的问题,该文基于活性粉末混凝土钢筋网加固混凝土技术(Technical for strengthening concrete structures with reactive powder concrete and bar mesh, RPCBM),展开了双面剪切试验。该文评估了各试件的抗剪强度、破坏形态与荷载位移曲线,系统性地探讨了粗糙度、植筋率、钢筋网规格对RPCBM加固旧混凝土结构界面剪切性能的影响。结果表明:RPCBM加固混凝土结构的界面抗剪强度和延性提升幅度较大,具有良好的粘结性能。在一定范围内,随着粗糙度增大,粘结界面抗剪强度提高;植筋率增高,抗剪强度与延性增强;钢筋网规格是改善界面延性的重要因素。在此基础上,为了更好地计算RPCBM加固混凝土的界面粘结强度,该文基于以上数据建立了粘结界面抗剪强度的模型,提出了综合计算RPCBM加固普通混凝土(Ordinary Concrete, OC)界面抗剪强度的公式,试验结果与理论分析吻合较好,为工程实践中加固材料的选择和改进施工方法提供了理论依据。Abstract: To solve the problems of weak durability and low bearing capacity of current concrete strengthening technology, double shear tests were conducted based on the technical for strengthening concrete structures with reactive powder concrete and bar mesh (RPCBM). The shear strength, failure mode and load-displacement curve of each specimen were evaluated, and the effects of roughness, pin rate and bar mesh specification on the interfacial stress strength of RPCBM reinforced old concrete structure were discussed . The results show that the shear strength and ductility of RPCBM reinforced concrete structure are greatly improved, and the interface has good bonding performance. Within a certain range, the shear strength of bonding interface increases with the increase of roughness; the shear strength and ductility increase with the increase of pin rate. In addition, the bar mesh specification is an important factor for improving the interface ductility. The shear strength model of bonding interface was established to calculate the interface bond strength of RPCBM reinforced concrete. The shear strength formula of RPCBM reinforced ordinary concrete (OC) interface was proposed, and the test results were consistent with the theoretical analysis, which provides a theoretical basis for the selection of reinforcement materials and improvement of construction methods in engineering practice.
-
表 1 试验分组
Table 1. Testing matrix
分组编号 加固层钢筋网规格/
(mm×mm)粗糙度等级 销钉根数/根 分组编号 加固层钢筋网规格/
(mm×mm)粗糙度等级 销钉根数/根 A-0-0 无 A级粗糙度:表面不做处理,光滑表面Rt<1.5 mm 0 B-50-8 网格50 (灌砂法测得约
1.0 mm~3.0 mm)8 A-0-18 无 18 B-75-8 网格75 8 A-0-9 无(100半锚) 9 B-100-18 网格100 18 A-0-8 无 8 B-100-9 网格100(半锚) 9 A-50-18 网格50 18 C-0-0 无 C级粗糙度:深度凿毛,可以看到90%以上的粗骨料,非常粗糙表面Rt≥3.0 mm(测得约3.2 mm~6.2 mm) 0 A-50-8 网格50 8 C-0-18 无 18 A-75-8 网格75 8 C-0-9 无(100半锚) 9 A-100-18 网格100 18 C-0-8 无 8 A-100-9 网格100(半锚) 9 C-50-18 网格50 18 B-0-0 无 B级粗糙度:轻度凿毛约30%至50%的粗骨料可见,粗糙度Rt≥1.5 mm 0 C-50-8 网格50 8 B-0-18 无 18 C-75-8 网格75 8 B-0-9 无(100半锚) 9 C-100-18 网格100 18 B-0-8 无 8 C-100-9 网格100(半锚) 9 B-50-18 网格50 18 − − − − 表 2 OC和RPC基本力学性能指标
Table 2. Basic mechanical properties of OC and RPC
强度
等级立方体抗压
强度/MPa立方体劈裂
抗拉强度/MPa轴心抗压
强度/MPa弹性
模量/GPaC40 46.8 2.9 − 33.5 RPC100 138.0 − 118.0 47.6 表 3 钢材基本力学性能指标
Table 3. Basic mechanical properties of steel
钢筋种类 钢筋直径/mm 钢筋屈服强度/MPa 弹性模量/MPa HRB400 6.0 472.5 2.2 表 4 试验荷载下的结果
Table 4. Characteristic values of testing loads and failure parameters for push-out tests
分组编号 构件双面剪切
试验开裂荷载Pcr/kN构件破坏
荷载Pu/kN构件双面试验
抗剪强度Τu/MPa极限荷载时的
滑移值Su/mm植筋率ρ Pcr/Pu /(%) 最大距离
D/cm面积比
C/B/(%)破坏形态 A-0-0 354.32 860 2.39 0.09 − 41.2 1.1 7 A A-0-18 781.20 1700 4.72 1.35 0.0057 46.0 9.1 25 BMA A-0-9 549.12 1180 3.28 1.11 0.0028 46.5 3.1 18 BMA A-0-8 562.32 1220 3.39 0.55 0.0025 46.1 2.6 17 BMA A-50-18 752.56 1840 5.11 1.41 0.0057 40.9 20.7 90 TMA A-50-8 597.64 1220 3.39 1.39 0.0025 49.0 4.6 18 CMA A-75-8 582.12 1200 3.33 1.14 0.0025 48.6 11.0 23 CMA A-100-18 738.92 1660 4.61 1.27 0.0057 44.5 19.2 67 CMA A-100-9 587.40 1200 3.33 1.13 0.0028 49.0 14.6 27 CMA B-0-0 604.50 1280 3.56 0.74 − 47.2 8.4 86 CMA B-0-18 938.00 2360 6.56 1.11 0.0057 39.7 11.3 80 BMA B-0-9 851.84 1600 4.44 0.89 0.0028 53.3 11.5 71 BMA B-0-8 828.24 1580 4.39 0.65 0.0025 52.4 9.6 16 BMA B-50-18 962.56 2300 6.39 1.19 0.0057 41.8 11.8 72 TMA B-50-8 910.80 1620 4.50 1.18 0.0025 56.2 7.6 30 CMA B-75-8 886.44 1600 4.44 1.16 0.0025 55.5 7.4 83 CMA B-100-18 952.00 2440 6.78 1.26 0.0057 39.0 13.5 88 TMA B-100-9 917.44 1880 5.22 1.31 0.0028 48.8 6.9 79 CMA C-0-0 764.56 1520 4.22 0.76 − 50.3 8.5 50 CMA C-0-18 1007.98 2340 6.50 1.34 0.0057 43.1 12.6 80 TMA C-0-9 907.92 1860 5.17 0.91 0.0028 48.8 23.9 96 TMA C-0-8 1026.48 1860 5.17 0.96 0.0025 55.2 9.8 94 TMA C-50-18 1098.24 2680 7.44 1.48 0.0057 41.0 11.3 78 TMA C-50-8 944.78 1940 5.39 0.92 0.0025 48.7 10.6 97 TMA C-75-8 910.10 1900 5.28 1.03 0.0025 47.9 15.6 100 TMA C-100-18 1041.48 2580 7.17 1.39 0.0057 40.3 13.5 96 TMA C-100-9 904.04 1940 5.39 1.06 0.0028 46.6 16.4 80 TMA 注:D/cm为剪切破坏面与同侧加固层外表面之间的最大距离;C/B/(%)为附着在RPC表面的普通混凝土与整个粘结界面的面积比。 表 5 OC-OC界面抗剪强度的典型计算公式
Table 5. Typical calculating models for the shear strength of OC-OC interface
规范 抗剪强度计算公式 ACI 318-08(2008)[22] ${V_{\rm u}} = {A_{ {\textit{ν}} f} }{f_{\rm y}}\mu$ AASHTO LRFD Bridge Design Specifications (2010)[23] ${V_{\rm u}} = c{A_{\rm c{\textit{ν}} } } + \mu {A_{{\textit{ν}}\rm f} }{f_{\rm y}}$ CAN/CSA-S6-00(2000)[24] ${V_{\rm u}} = {\varphi }_{\rm c} {A}_{\rm c{\textit{ν}} }(c+\mu \rho {f}_{\rm y})$ 水泥复合砂浆钢筋网加固混凝土
结构技术规程CECS 242−2016[25]${V_{\rm u}} = {k_1}{k_2}{f_{\rm c}}{A_{\rm c{\textit{ν}} } } + nf{\gamma _{\rm b}}{W_{\rm x}}/{L_{\rm b}}$ Fib Model Code for CoOCrete
Structures (2010)[26]${V_{\rm u}} = {\text{A} }_{\rm c{\textit{ν}} }(\text{c}+\mu \rho {\kappa }_{1}{f}_{\rm y}+{\kappa }_{2}\rho \sqrt{ {f}_{\rm y}{f}_{\rm c } })$ 注:${A_{\rm {\textit{ν}} f} }$为抗剪钢筋面积;${f_{\rm {y} } }$为抗剪钢筋屈服强度;$\mu $为摩擦系数;c为界面粘聚力;${A_{ {\rm {c} }{\textit{ν}} } }$为新老混凝土界面面积;$\rho $为抗剪钢筋配筋率;${\kappa _1}$,${\kappa _2}$为相互作用系数;${f_{\rm c}}$为混凝土轴心抗压强度设计值;k1为混凝土强度影响系数;k2为界面销钉分布影响系数;${\phi _{\text{c}}}$为强度折减系数;n为构件剪切销钉根数(剪切销钉均匀分布);γb为截面塑性发展系数;Wx为单根销钉净截面抗弯模量;Lb为销钉的外露长度。 表 6 系数K1、K2、α的值
Table 6. Values for K1, K2 and α coeffificients
界面类型 K1 K2 α A级粗糙度 1.8327 0.3978 1.0 B级粗糙度 0.3558 1.7056 1.5 C级粗糙度 0.1898 1.3534 1.8 表 7 RPCBM-OC界面抗剪强度实测值与计算值对比
Table 7. Comparison of measured and calculated shear strength of RPCBM-OC interface
编号 实测值 计算值 误差/(%) 编号 实测值 计算值 误差/(%) A-0-0 2.39 2.00 16.3 B-50-8 4.50 4.63 2.0 A-0-18 4.72 4.54 4.0 B-75-8 4.44 4.63 −1.6 A-0-9 3.28 3.09 5.7 B-100-18 6.78 6.04 7.9 A-0-8 3.39 3.13 7.7 B-100-9 5.22 4.59 12.1 A-50-18 5.11 4.54 11.2 C-0-0 4.22 4.00 5.3 A-50-8 3.39 3.13 7.7 C-0-18 6.50 6.54 −0.5 A-75-8 3.33 3.13 6.2 C-0-9 5.17 5.09 1.5 A-100-18 4.61 4.54 1.6 C-0-8 5.17 5.15 0.8 A-100-9 3.33 3.09 7.3 C-50-18 7.44 6.54 12.2 B-0-0 3.56 3.50 1.6 C-50-8 5.39 5.15 4.8 B-0-18 6.56 6.04 5.5 C-75-8 5.28 5.15 2.8 B-0-9 4.44 4.59 −3.3 C-100-18 7.17 6.54 8.8 B-0-8 4.39 4.63 −5.4 C-100-9 5.39 5.09 5.5 B-50-18 6.78 6.39 5.7 − − − − -
[1] 阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010, 12(9): 36 − 41. doi: 10.3969/j.issn.1674-7011.2010.09.009YAN Peiyu. Development and present situation of ultra high performance concrete (UHPC) [J]. China Concrete, 2010, 12(9): 36 − 41. (in Chinese) doi: 10.3969/j.issn.1674-7011.2010.09.009 [2] 金凌志, 梅臣, 杨蕊. 钢纤维对高强钢筋RPC无腹筋梁的剪切性能影响研究[J]. 工程力学, 2016, 33(增刊): 190 − 195. doi: 10.6052/j.issn.1000-4750.2015.05.S028JIN Lingzhi, MEI Chen, YANG Rui. Study on the effect of steel fiber on shear performance of high-strength reinforced RPC beams without stirrups [J]. Engineering Mechanics, 2016, 33(Suppl): 190 − 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S028 [3] 童乐为, 任珍珍, 景爽, 等. 高强度结构钢系列的疲劳裂纹扩展速率试验研究[J]. 工程力学, 2020, 37(12): 191 − 201, 212. doi: 10.6052/j.issn.1000-4750.2020.04.0246TONG Lewei, REN Zhenzhen, JING Shuang, et al. Experimental study on fatigue crack growth rate of high strength structural steel series [J]. Engineering Mechanics, 2020, 37(12): 191 − 201, 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0246 [4] 屈文俊, 秦宇航. 活性粉末混凝土(RPC)研究与应用评述[J]. 结构工程师, 2007, 23(5): 86 − 92.QU Wenjun, QIN Yuhang. A review of study and application of reactive powder concrete (RPC) [J]. Structural Engineers, 2007, 23(5): 86 − 92. (in Chinese) [5] LEE M G, WANG Y C, CHIU C T. A preliminary study of reactive powder concrete as a new repair material [J]. Construction and Building Materials, 2005, 21(1): 182 − 189. doi: 10.1016/j.conbuildmat.2005.06.024 [6] MOMAYEZ A, EHSANI M R, RAMEZANIANPOUR A A, et al. Comparison of methods for evaluating bond strength between concrete substrate and repair materials [J]. Cement and Concrete Research, 2004, 35(4): 748 − 757. doi: 10.1016/j.cemconres.2004.05.027 [7] DENG M, MA F, YE W, et al. Flexural behavior of reinforced concrete beams strengthened by HDC and RPC [J]. Construction and Building Materials, 2018, 188: 995 − 1006. doi: 10.1016/j.conbuildmat.2018.08.124 [8] JANG H O, LEE H S, CHO K, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC) [J]. Construction and Building Materials, 2017, 152: 16 − 23. doi: 10.1016/j.conbuildmat.2017.06.156 [9] FARZAD M, SHAFIEIFAR M, AZIZINAMINI A. Experimental and numerical study on bond strength between conventional concrete and ultra high-performance concrete (UHPC) [J]. Engineering Structures, 2019, 186: 297 − 305. doi: 10.1016/j.engstruct.2019.02.030 [10] JU Y, SHEN T, WANG D. Bonding behavior between reactive powder concrete and normal strength concrete [J]. Construction and Building Materials, 2020, 242: 118024. doi: 10.1016/j.conbuildmat.2020.118024 [11] VALIKHANI A, JAHROMI A J, MANTAWY I M, et al. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application [J]. Construction and Building Materials, 2020, 238: 117753. doi: 10.1016/j.conbuildmat.2019.117753 [12] ZHANG Y, ZHU P, WANG X, et al. Shear properties of the interface between ultra-high performance concrete and normal strength concrete [J]. Construction and Building Materials, 2020, 248: 118455. doi: 10.1016/j.conbuildmat.2020.118455 [13] ZHANG Y, ZHANG C, ZHU Y, et al. An experimental study: various influence factors affecting interfacial shear performance of UHPC-NSC [J]. Construction and Building Materials, 2020, 236: 117480. doi: 10.1016/j.conbuildmat.2019.117480 [14] 董坤, 郝建, 文李鹏, 等. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117 − 126. doi: 10.6052/j.issn.1000-4750.2019.12.0783DONG Kun, HAO Jian, WEN Lipeng, et al. Analysis of FRP concrete interface bonding behavior under ambient temperature difference [J]. Engineering Mechanics, 2020, 37(11): 117 − 126. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0783 [15] SEMENDARY A A, SVECOVA D. Factors affecting bond between precast concrete and cast in place ultra high performance concrete (UHPC) [J]. Engineering Structures, 2020, 216: 110746. doi: 10.1016/j.engstruct.2020.110746 [16] GB/T 31387−2015, 活性粉末混凝土[S]. 北京: 中国标准出版社, 2015.GB/T 31387−2015, Reactive powder concrete [S]. Beijing: Standards Press of China, 2015. (in Chinese) [17] 金浏, 夏海, 蒋轩昂, 等. 剪跨比对CFRP加固无腹筋混凝土梁剪切破坏及尺寸效应的影响研究[J]. 工程力学, 2021, 38(3): 50 − 59, 85. doi: 10.6052/j.issn.1000-4750.2020.01.0028JI Liu, XIA Hai, JIANG Xuanang, et al. Influence of shear-span ratio on shear failure and size effect of CFRP reinforced concrete beams without ribs [J]. Engineering Mechanics, 2021, 38(3): 50 − 59, 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0028 [18] ZHANG J, HU X, WU J, et al. Shear behavior of headed stud connectors in steel-MPC based high strength concrete composite beams [J]. Engineering Structures, 2021, 249: 113302. doi: 10.1016/j.engstruct.2021.113302 [19] 胡传林, 李宗津, 王发洲. 混凝土微观力学基础研究进展及应用展望[J]. 工程力学, 2021, 38(4): 1 − 7,92. doi: 10.6052/j.issn.1000-4750.2020.08.ST09HU Chuanlin, LI Zongjin, WANG Fazhou. Progress and application prospect of fundamental research on concrete micromechanics [J]. Engineering Mechanics, 2021, 38(4): 1 − 7,92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.ST09 [20] COURARD L, PIOTROWSKI T, GARBACZ A. Near-to-Surface properties affecting bond strength in concrete repair [J]. Cement and Concrete Composites, 2014, 46(1): 73 − 80. doi: 10.1016/j.cemconcomp.2013.11.005 [21] LIU J, CHEN Z, GUAN D, et al. Experimental study on interfacial shear behaviour between ultra-high performance concrete and normal strength concrete in precast composite members [J]. Construction and Building Materials, 2020, 261: 120008. doi: 10.1016/j.conbuildmat.2020.120008 [22] ACI Committee 318, Building code requirement for structural concrete (ACI 318-08) and commentary (ACI 318R-08) [S]. Detroit: American Concrete Institute, 2008. [23] AASHTO, AASHTO LRFD bridge design specifications [S]. Washington, DC: American Association of State Highway and Transportation Officials, 2010. [24] CAN/CSA-S6-00, Canadian highway bridge design code [S]. Mississauga, Ontario: Canadian Standards Association, 2000. [25] CECS 242−2016, 水泥复合砂浆钢筋网加固混凝土结构技术规程[S]. 北京: 中国计划出版社, 2016.CECS 242−2016, Technical specification for reinforced concrete structures with grid rebar and mortar [S]. Beijing: China Planning Press, 2016. (in Chinese) [26] CEB-FIP, Fib model code for concrete structures 2010 [S]. Berlin: Ernst & Sohn, 2010. [27] 刘杰, 陈娟娟. 新老混凝土界面抗剪强度研究现状综述[J]. 混凝土, 2015, 37(1): 62 − 67. doi: 10.3969/j.issn.1002-3550.2015.01.016LIU Jie, CHEN Juanjuan. State of the art review on shear strength of interface between new and old concrete [J]. Concrete, 2015, 37(1): 62 − 67. (in Chinese) doi: 10.3969/j.issn.1002-3550.2015.01.016 [28] GRAYBEAL B A. Compression testing of ultra-high-performance concrete [J]. Advances in Civil Engineering Materials, 2014, 4(2): 20140027. doi: 10.1520/ACEM20140027 [29] 季文玉, 过民龙, 李旺旺. RPC-NC组合梁界面受力性能研究[J]. 中国铁道科学, 2016, 37(1): 46 − 52. doi: 10.3969/j.issn.1001-4632.2016.01.07JI Wenyu, GUO Minlong, LI Wangwang. lnterface mechanical behavior of RPC-NC composite beam [J]. China Railway Science, 2016, 37(1): 46 − 52. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.01.07 [30] 吴香国, 张孝臣. 预制超高性能混凝土修复层与既有混凝土界面黏结短期性能研究[J]. 建筑结构学报, 2018, 39(10): 156 − 163. doi: 10.14006/j.jzjgxb.2018.10.018WU Xiangguo, ZHANG Xiaochen. Investigation of short-term interfacial bond behavior between existing concrete and precast ultra-high performance concrete layer [J]. Journal of Building Structures, 2018, 39(10): 156 − 163. (in Chinese) doi: 10.14006/j.jzjgxb.2018.10.018 [31] SEMENDARY A A, HAMID W K, STEINBERG E P, et al. Shear friction performance between high strength concrete (HSC) and ultra high performance concrete (UHPC) for bridge connection applications [J]. Engineering Structures, 2020, 205: 110122. doi: 10.1016/j.engstruct.2019.110122 [32] 王伟, 苏小卒, 赵勇. 钢筋混凝土界面抗剪承载力计算方法比较研究[J]. 结构工程师, 2010, 26(4): 130 − 136. doi: 10.3969/j.issn.1005-0159.2010.04.024WANG Wei, SU Xiaozu, ZHAO Yong. Comparison research on computational method about interface shear capacity in reinforced concrete [J]. Structural Engineers, 2010, 26(4): 130 − 136. (in Chinese) doi: 10.3969/j.issn.1005-0159.2010.04.024 [33] VALIKHNAI A, JAHROMI A J, MANTAWY I M, et al. Effect of mechanical connectors on interface shear strength between concrete substrates and UHPC: Experimental and numerical studies and proposed design equation [J]. Construction and Building Materials, 2021, 267: 120587. doi: 10.1016/j.conbuildmat.2020.120587 [34] RUAN Y, HAN B, YU X, et al. Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure [J]. Construction and Building Materials, 2018, 162: 663 − 673. doi: 10.1016/j.conbuildmat.2017.12.063 [35] HUNG C C, CHEN Y T, YEN C H. Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers [J]. Construction and Building Materials, 2020, 260: 119944. doi: 10.1016/j.conbuildmat.2020.119944 -