留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高性能RPC钢筋网加固混凝土界面粘结性能试验研究

卜良桃 徐博煜

卜良桃, 徐博煜. 超高性能RPC钢筋网加固混凝土界面粘结性能试验研究[J]. 工程力学, 2022, 39(11): 123-132. doi: 10.6052/j.issn.1000-4750.2021.06.0469
引用本文: 卜良桃, 徐博煜. 超高性能RPC钢筋网加固混凝土界面粘结性能试验研究[J]. 工程力学, 2022, 39(11): 123-132. doi: 10.6052/j.issn.1000-4750.2021.06.0469
BU Liang-tao, XU Bo-yu. EXPERIMENTAL STUDY ON INTERFACIAL BONDING PERFORMANCE OF REACTIVE POWDER CONCRETE STRENGTHENED WITH BAR MESH[J]. Engineering Mechanics, 2022, 39(11): 123-132. doi: 10.6052/j.issn.1000-4750.2021.06.0469
Citation: BU Liang-tao, XU Bo-yu. EXPERIMENTAL STUDY ON INTERFACIAL BONDING PERFORMANCE OF REACTIVE POWDER CONCRETE STRENGTHENED WITH BAR MESH[J]. Engineering Mechanics, 2022, 39(11): 123-132. doi: 10.6052/j.issn.1000-4750.2021.06.0469

超高性能RPC钢筋网加固混凝土界面粘结性能试验研究

doi: 10.6052/j.issn.1000-4750.2021.06.0469
基金项目: 中国工程建设标准化协会资助项目:活性粉末混凝土高强钢筋网薄层加固混凝土结构技术规程项目(建标协字[2019]22号)
详细信息
    作者简介:

    徐博煜(1997−),女,浙江衢州人,硕士生,主要从事工程结构加固技术研究(E-mail: xuby127@163.com)

    通讯作者:

    卜良桃(1963−),男,湖南南县人,教授,博士,主要从事工程结构加固技术研究(E-mail: plt63@126.com)

  • 中图分类号: TU398

EXPERIMENTAL STUDY ON INTERFACIAL BONDING PERFORMANCE OF REACTIVE POWDER CONCRETE STRENGTHENED WITH BAR MESH

  • 摘要: 针对现有混凝土加固技术导致的耐久性弱、承载力低的问题,该文基于活性粉末混凝土钢筋网加固混凝土技术(Technical for strengthening concrete structures with reactive powder concrete and bar mesh, RPCBM),展开了双面剪切试验。该文评估了各试件的抗剪强度、破坏形态与荷载位移曲线,系统性地探讨了粗糙度、植筋率、钢筋网规格对RPCBM加固旧混凝土结构界面剪切性能的影响。结果表明:RPCBM加固混凝土结构的界面抗剪强度和延性提升幅度较大,具有良好的粘结性能。在一定范围内,随着粗糙度增大,粘结界面抗剪强度提高;植筋率增高,抗剪强度与延性增强;钢筋网规格是改善界面延性的重要因素。在此基础上,为了更好地计算RPCBM加固混凝土的界面粘结强度,该文基于以上数据建立了粘结界面抗剪强度的模型,提出了综合计算RPCBM加固普通混凝土(Ordinary Concrete, OC)界面抗剪强度的公式,试验结果与理论分析吻合较好,为工程实践中加固材料的选择和改进施工方法提供了理论依据。
  • 图  1  双面剪切试验RPCBM-OC组合棱柱体图

    Figure  1.  Composite diagram of RPCBM-OC prism components in Double shear test

    图  2  双面剪切试验加载示意图

    Figure  2.  Double shear test setup and loading scheme

    图  3  不同测试组的破坏形态

    Figure  3.  Failure modes of different test groups

    图  4  双面剪切构件的荷载-位移曲线

    Figure  4.  Load-interfacial slip curves of push-out specimens

    图  5  RPCBM-OC界面抗剪机制

    Figure  5.  Shear resistance mechanisms of RPCBM-OC interfaces

    图  6  RPCBM-OC界面抗剪强度实测值与公式计算值对比图

    Figure  6.  Comparison of measured and calculated shear strength of RPCBM-OC interface

    表  1  试验分组

    Table  1.   Testing matrix

    分组编号加固层钢筋网规格/
    (mm×mm)
    粗糙度等级销钉根数/根分组编号加固层钢筋网规格/
    (mm×mm)
    粗糙度等级销钉根数/根
    A-0-0A级粗糙度:表面不做处理,光滑表面Rt<1.5 mm0B-50-8网格50(灌砂法测得约
    1.0 mm~3.0 mm)
    8
    A-0-1818B-75-8网格758
    A-0-9无(100半锚)9B-100-18网格10018
    A-0-88B-100-9网格100(半锚)9
    A-50-18网格5018C-0-0C级粗糙度:深度凿毛,可以看到90%以上的粗骨料,非常粗糙表面Rt≥3.0 mm(测得约3.2 mm~6.2 mm)0
    A-50-8网格508C-0-1818
    A-75-8网格758C-0-9无(100半锚)9
    A-100-18网格10018C-0-88
    A-100-9网格100(半锚)9C-50-18网格5018
    B-0-0B级粗糙度:轻度凿毛约30%至50%的粗骨料可见,粗糙度Rt≥1.5 mm0C-50-8网格508
    B-0-1818C-75-8网格758
    B-0-9无(100半锚)9C-100-18网格10018
    B-0-88C-100-9网格100(半锚)9
    B-50-18网格5018
    下载: 导出CSV

    表  2  OC和RPC基本力学性能指标

    Table  2.   Basic mechanical properties of OC and RPC

    强度
    等级
    立方体抗压
    强度/MPa
    立方体劈裂
    抗拉强度/MPa
    轴心抗压
    强度/MPa
    弹性
    模量/GPa
    C4046.82.933.5
    RPC100138.0118.047.6
    下载: 导出CSV

    表  3  钢材基本力学性能指标

    Table  3.   Basic mechanical properties of steel

    钢筋种类钢筋直径/mm钢筋屈服强度/MPa弹性模量/MPa
    HRB4006.0472.52.2
    下载: 导出CSV

    表  4  试验荷载下的结果

    Table  4.   Characteristic values of testing loads and failure parameters for push-out tests

    分组编号构件双面剪切
    试验开裂荷载Pcr/kN
    构件破坏
    荷载Pu/kN
    构件双面试验
    抗剪强度Τu/MPa
    极限荷载时的
    滑移值Su/mm
    植筋率ρPcr/Pu /(%)最大距离
    D/cm
    面积比
    C/B/(%)
    破坏形态
    A-0-0354.328602.390.0941.21.17A
    A-0-18781.2017004.721.350.005746.09.125BMA
    A-0-9549.1211803.281.110.002846.53.118BMA
    A-0-8562.3212203.390.550.002546.12.617BMA
    A-50-18752.5618405.111.410.005740.920.790TMA
    A-50-8597.6412203.391.390.002549.04.618CMA
    A-75-8582.1212003.331.140.002548.611.023CMA
    A-100-18738.9216604.611.270.005744.519.267CMA
    A-100-9587.4012003.331.130.002849.014.627CMA
    B-0-0604.5012803.560.7447.28.486CMA
    B-0-18938.0023606.561.110.005739.711.380BMA
    B-0-9851.8416004.440.890.002853.311.571BMA
    B-0-8828.2415804.390.650.002552.49.616BMA
    B-50-18962.5623006.391.190.005741.811.872TMA
    B-50-8910.8016204.501.180.002556.27.630CMA
    B-75-8886.4416004.441.160.002555.57.483CMA
    B-100-18952.0024406.781.260.005739.013.588TMA
    B-100-9917.4418805.221.310.002848.86.979CMA
    C-0-0764.5615204.220.7650.38.550CMA
    C-0-181007.9823406.501.340.005743.112.680TMA
    C-0-9907.9218605.170.910.002848.823.996TMA
    C-0-81026.4818605.170.960.002555.29.894TMA
    C-50-181098.2426807.441.480.005741.011.378TMA
    C-50-8944.7819405.390.920.002548.710.697TMA
    C-75-8910.1019005.281.030.002547.915.6100TMA
    C-100-181041.4825807.171.390.005740.313.596TMA
    C-100-9904.0419405.391.060.002846.616.480TMA
    注:D/cm为剪切破坏面与同侧加固层外表面之间的最大距离;C/B/(%)为附着在RPC表面的普通混凝土与整个粘结界面的面积比。
    下载: 导出CSV

    表  5  OC-OC界面抗剪强度的典型计算公式

    Table  5.   Typical calculating models for the shear strength of OC-OC interface

    规范抗剪强度计算公式
    ACI 318-08(2008)[22]${V_{\rm u}} = {A_{ {\textit{ν}} f} }{f_{\rm y}}\mu$
    AASHTO LRFD Bridge Design Specifications (2010)[23]${V_{\rm u}} = c{A_{\rm c{\textit{ν}} } } + \mu {A_{{\textit{ν}}\rm f} }{f_{\rm y}}$
    CAN/CSA-S6-00(2000)[24]${V_{\rm u}} = {\varphi }_{\rm c} {A}_{\rm c{\textit{ν}} }(c+\mu \rho {f}_{\rm y})$
    水泥复合砂浆钢筋网加固混凝土
    结构技术规程CECS 242−2016[25]
    ${V_{\rm u}} = {k_1}{k_2}{f_{\rm c}}{A_{\rm c{\textit{ν}} } } + nf{\gamma _{\rm b}}{W_{\rm x}}/{L_{\rm b}}$
    Fib Model Code for CoOCrete
    Structures (2010)[26]
    ${V_{\rm u}} = {\text{A} }_{\rm c{\textit{ν}} }(\text{c}+\mu \rho {\kappa }_{1}{f}_{\rm y}+{\kappa }_{2}\rho \sqrt{ {f}_{\rm y}{f}_{\rm c } })$
    注:${A_{\rm {\textit{ν}} f} }$为抗剪钢筋面积;${f_{\rm {y} } }$为抗剪钢筋屈服强度;$\mu $为摩擦系数;c为界面粘聚力;${A_{ {\rm {c} }{\textit{ν}} } }$为新老混凝土界面面积;$\rho $为抗剪钢筋配筋率;${\kappa _1}$,${\kappa _2}$为相互作用系数;${f_{\rm c}}$为混凝土轴心抗压强度设计值;k1为混凝土强度影响系数;k2为界面销钉分布影响系数;${\phi _{\text{c}}}$为强度折减系数;n为构件剪切销钉根数(剪切销钉均匀分布);γb为截面塑性发展系数;Wx为单根销钉净截面抗弯模量;Lb为销钉的外露长度。
    下载: 导出CSV

    表  6  系数K1K2α的值

    Table  6.   Values for K1, K2 and α coeffificients

    界面类型K1K2α
    A级粗糙度1.83270.39781.0
    B级粗糙度0.35581.70561.5
    C级粗糙度0.18981.35341.8
    下载: 导出CSV

    表  7  RPCBM-OC界面抗剪强度实测值与计算值对比

    Table  7.   Comparison of measured and calculated shear strength of RPCBM-OC interface

    编号实测值计算值误差/(%)编号实测值计算值误差/(%)
    A-0-02.392.0016.3B-50-84.504.632.0
    A-0-184.724.544.0B-75-84.444.63−1.6
    A-0-93.283.095.7B-100-186.786.047.9
    A-0-83.393.137.7B-100-95.224.5912.1
    A-50-185.114.5411.2C-0-04.224.005.3
    A-50-83.393.137.7C-0-186.506.54−0.5
    A-75-83.333.136.2C-0-95.175.091.5
    A-100-184.614.541.6C-0-85.175.150.8
    A-100-93.333.097.3C-50-187.446.5412.2
    B-0-03.563.501.6C-50-85.395.154.8
    B-0-186.566.045.5C-75-85.285.152.8
    B-0-94.444.59−3.3C-100-187.176.548.8
    B-0-84.394.63−5.4C-100-95.395.095.5
    B-50-186.786.395.7
    下载: 导出CSV
  • [1] 阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010, 12(9): 36 − 41. doi: 10.3969/j.issn.1674-7011.2010.09.009

    YAN Peiyu. Development and present situation of ultra high performance concrete (UHPC) [J]. China Concrete, 2010, 12(9): 36 − 41. (in Chinese) doi: 10.3969/j.issn.1674-7011.2010.09.009
    [2] 金凌志, 梅臣, 杨蕊. 钢纤维对高强钢筋RPC无腹筋梁的剪切性能影响研究[J]. 工程力学, 2016, 33(增刊): 190 − 195. doi: 10.6052/j.issn.1000-4750.2015.05.S028

    JIN Lingzhi, MEI Chen, YANG Rui. Study on the effect of steel fiber on shear performance of high-strength reinforced RPC beams without stirrups [J]. Engineering Mechanics, 2016, 33(Suppl): 190 − 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S028
    [3] 童乐为, 任珍珍, 景爽, 等. 高强度结构钢系列的疲劳裂纹扩展速率试验研究[J]. 工程力学, 2020, 37(12): 191 − 201, 212. doi: 10.6052/j.issn.1000-4750.2020.04.0246

    TONG Lewei, REN Zhenzhen, JING Shuang, et al. Experimental study on fatigue crack growth rate of high strength structural steel series [J]. Engineering Mechanics, 2020, 37(12): 191 − 201, 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0246
    [4] 屈文俊, 秦宇航. 活性粉末混凝土(RPC)研究与应用评述[J]. 结构工程师, 2007, 23(5): 86 − 92.

    QU Wenjun, QIN Yuhang. A review of study and application of reactive powder concrete (RPC) [J]. Structural Engineers, 2007, 23(5): 86 − 92. (in Chinese)
    [5] LEE M G, WANG Y C, CHIU C T. A preliminary study of reactive powder concrete as a new repair material [J]. Construction and Building Materials, 2005, 21(1): 182 − 189. doi: 10.1016/j.conbuildmat.2005.06.024
    [6] MOMAYEZ A, EHSANI M R, RAMEZANIANPOUR A A, et al. Comparison of methods for evaluating bond strength between concrete substrate and repair materials [J]. Cement and Concrete Research, 2004, 35(4): 748 − 757. doi: 10.1016/j.cemconres.2004.05.027
    [7] DENG M, MA F, YE W, et al. Flexural behavior of reinforced concrete beams strengthened by HDC and RPC [J]. Construction and Building Materials, 2018, 188: 995 − 1006. doi: 10.1016/j.conbuildmat.2018.08.124
    [8] JANG H O, LEE H S, CHO K, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC) [J]. Construction and Building Materials, 2017, 152: 16 − 23. doi: 10.1016/j.conbuildmat.2017.06.156
    [9] FARZAD M, SHAFIEIFAR M, AZIZINAMINI A. Experimental and numerical study on bond strength between conventional concrete and ultra high-performance concrete (UHPC) [J]. Engineering Structures, 2019, 186: 297 − 305. doi: 10.1016/j.engstruct.2019.02.030
    [10] JU Y, SHEN T, WANG D. Bonding behavior between reactive powder concrete and normal strength concrete [J]. Construction and Building Materials, 2020, 242: 118024. doi: 10.1016/j.conbuildmat.2020.118024
    [11] VALIKHANI A, JAHROMI A J, MANTAWY I M, et al. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application [J]. Construction and Building Materials, 2020, 238: 117753. doi: 10.1016/j.conbuildmat.2019.117753
    [12] ZHANG Y, ZHU P, WANG X, et al. Shear properties of the interface between ultra-high performance concrete and normal strength concrete [J]. Construction and Building Materials, 2020, 248: 118455. doi: 10.1016/j.conbuildmat.2020.118455
    [13] ZHANG Y, ZHANG C, ZHU Y, et al. An experimental study: various influence factors affecting interfacial shear performance of UHPC-NSC [J]. Construction and Building Materials, 2020, 236: 117480. doi: 10.1016/j.conbuildmat.2019.117480
    [14] 董坤, 郝建, 文李鹏, 等. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117 − 126. doi: 10.6052/j.issn.1000-4750.2019.12.0783

    DONG Kun, HAO Jian, WEN Lipeng, et al. Analysis of FRP concrete interface bonding behavior under ambient temperature difference [J]. Engineering Mechanics, 2020, 37(11): 117 − 126. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0783
    [15] SEMENDARY A A, SVECOVA D. Factors affecting bond between precast concrete and cast in place ultra high performance concrete (UHPC) [J]. Engineering Structures, 2020, 216: 110746. doi: 10.1016/j.engstruct.2020.110746
    [16] GB/T 31387−2015, 活性粉末混凝土[S]. 北京: 中国标准出版社, 2015.

    GB/T 31387−2015, Reactive powder concrete [S]. Beijing: Standards Press of China, 2015. (in Chinese)
    [17] 金浏, 夏海, 蒋轩昂, 等. 剪跨比对CFRP加固无腹筋混凝土梁剪切破坏及尺寸效应的影响研究[J]. 工程力学, 2021, 38(3): 50 − 59, 85. doi: 10.6052/j.issn.1000-4750.2020.01.0028

    JI Liu, XIA Hai, JIANG Xuanang, et al. Influence of shear-span ratio on shear failure and size effect of CFRP reinforced concrete beams without ribs [J]. Engineering Mechanics, 2021, 38(3): 50 − 59, 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0028
    [18] ZHANG J, HU X, WU J, et al. Shear behavior of headed stud connectors in steel-MPC based high strength concrete composite beams [J]. Engineering Structures, 2021, 249: 113302. doi: 10.1016/j.engstruct.2021.113302
    [19] 胡传林, 李宗津, 王发洲. 混凝土微观力学基础研究进展及应用展望[J]. 工程力学, 2021, 38(4): 1 − 7,92. doi: 10.6052/j.issn.1000-4750.2020.08.ST09

    HU Chuanlin, LI Zongjin, WANG Fazhou. Progress and application prospect of fundamental research on concrete micromechanics [J]. Engineering Mechanics, 2021, 38(4): 1 − 7,92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.ST09
    [20] COURARD L, PIOTROWSKI T, GARBACZ A. Near-to-Surface properties affecting bond strength in concrete repair [J]. Cement and Concrete Composites, 2014, 46(1): 73 − 80. doi: 10.1016/j.cemconcomp.2013.11.005
    [21] LIU J, CHEN Z, GUAN D, et al. Experimental study on interfacial shear behaviour between ultra-high performance concrete and normal strength concrete in precast composite members [J]. Construction and Building Materials, 2020, 261: 120008. doi: 10.1016/j.conbuildmat.2020.120008
    [22] ACI Committee 318, Building code requirement for structural concrete (ACI 318-08) and commentary (ACI 318R-08) [S]. Detroit: American Concrete Institute, 2008.
    [23] AASHTO, AASHTO LRFD bridge design specifications [S]. Washington, DC: American Association of State Highway and Transportation Officials, 2010.
    [24] CAN/CSA-S6-00, Canadian highway bridge design code [S]. Mississauga, Ontario: Canadian Standards Association, 2000.
    [25] CECS 242−2016, 水泥复合砂浆钢筋网加固混凝土结构技术规程[S]. 北京: 中国计划出版社, 2016.

    CECS 242−2016, Technical specification for reinforced concrete structures with grid rebar and mortar [S]. Beijing: China Planning Press, 2016. (in Chinese)
    [26] CEB-FIP, Fib model code for concrete structures 2010 [S]. Berlin: Ernst & Sohn, 2010.
    [27] 刘杰, 陈娟娟. 新老混凝土界面抗剪强度研究现状综述[J]. 混凝土, 2015, 37(1): 62 − 67. doi: 10.3969/j.issn.1002-3550.2015.01.016

    LIU Jie, CHEN Juanjuan. State of the art review on shear strength of interface between new and old concrete [J]. Concrete, 2015, 37(1): 62 − 67. (in Chinese) doi: 10.3969/j.issn.1002-3550.2015.01.016
    [28] GRAYBEAL B A. Compression testing of ultra-high-performance concrete [J]. Advances in Civil Engineering Materials, 2014, 4(2): 20140027. doi: 10.1520/ACEM20140027
    [29] 季文玉, 过民龙, 李旺旺. RPC-NC组合梁界面受力性能研究[J]. 中国铁道科学, 2016, 37(1): 46 − 52. doi: 10.3969/j.issn.1001-4632.2016.01.07

    JI Wenyu, GUO Minlong, LI Wangwang. lnterface mechanical behavior of RPC-NC composite beam [J]. China Railway Science, 2016, 37(1): 46 − 52. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.01.07
    [30] 吴香国, 张孝臣. 预制超高性能混凝土修复层与既有混凝土界面黏结短期性能研究[J]. 建筑结构学报, 2018, 39(10): 156 − 163. doi: 10.14006/j.jzjgxb.2018.10.018

    WU Xiangguo, ZHANG Xiaochen. Investigation of short-term interfacial bond behavior between existing concrete and precast ultra-high performance concrete layer [J]. Journal of Building Structures, 2018, 39(10): 156 − 163. (in Chinese) doi: 10.14006/j.jzjgxb.2018.10.018
    [31] SEMENDARY A A, HAMID W K, STEINBERG E P, et al. Shear friction performance between high strength concrete (HSC) and ultra high performance concrete (UHPC) for bridge connection applications [J]. Engineering Structures, 2020, 205: 110122. doi: 10.1016/j.engstruct.2019.110122
    [32] 王伟, 苏小卒, 赵勇. 钢筋混凝土界面抗剪承载力计算方法比较研究[J]. 结构工程师, 2010, 26(4): 130 − 136. doi: 10.3969/j.issn.1005-0159.2010.04.024

    WANG Wei, SU Xiaozu, ZHAO Yong. Comparison research on computational method about interface shear capacity in reinforced concrete [J]. Structural Engineers, 2010, 26(4): 130 − 136. (in Chinese) doi: 10.3969/j.issn.1005-0159.2010.04.024
    [33] VALIKHNAI A, JAHROMI A J, MANTAWY I M, et al. Effect of mechanical connectors on interface shear strength between concrete substrates and UHPC: Experimental and numerical studies and proposed design equation [J]. Construction and Building Materials, 2021, 267: 120587. doi: 10.1016/j.conbuildmat.2020.120587
    [34] RUAN Y, HAN B, YU X, et al. Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure [J]. Construction and Building Materials, 2018, 162: 663 − 673. doi: 10.1016/j.conbuildmat.2017.12.063
    [35] HUNG C C, CHEN Y T, YEN C H. Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers [J]. Construction and Building Materials, 2020, 260: 119944. doi: 10.1016/j.conbuildmat.2020.119944
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  72
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-23
  • 录用日期:  2021-12-14
  • 修回日期:  2021-12-07
  • 网络出版日期:  2021-12-14
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回