SHAPE-SENSING ARRAY BASED ON INVERSE FINITE ELEMENT METHOD AND EXPERIMENT OF BRIDGE DEFLECTION MONITORING
-
摘要: 桥梁挠度是桥梁工程从设计阶段到运维阶段的重要控制指标,对其进行实时监测对桥梁工程的性能评估至关重要。该文提出一种形状还原传感阵列,该传感阵列基于逆有限元方法,仅通过有限点的实测应变数据即可实时、准确地还原出桥梁挠曲线。详细阐述了逆有限元法基本原理与形状还原传感阵列装置,将该项技术应用于混凝土自锚式悬索桥梁模型进行挠度监测试验研究,分别对桥梁模型进行静态加载与动态加载,通过水准仪与激光位移计对还原得到的挠曲线形状与精度进行验证。结果表明:形状还原传感阵列对于桥梁挠度的监测具有易于安装、数据准确、实时性好的优点,不仅可以准确还原出桥梁挠度,而且可以实时反演出桥梁挠曲线形状,能够有效地评估桥梁工程性能质量。Abstract: Bridge deflection is an important indicator for the bridges from their design to their operation and maintenance stage. Real-time monitoring is crucial for the performance evaluation of bridges. A shape-sensing array based on the inverse finite element method (iFEM) is proposed. The deflection curve of a bridge can accurately be obtained by the strain data measured at limited points in real-time. Thusly, the basic principle of inverse finite element method and shape inversion sensing array device are described in detail. The technology is applied to the experimental study of deflection monitoring of a concrete self-anchored suspension bridge model. Static loading and dynamic loading were carried out on the bridge model, and the shape and the accuracy of the inverted deflection curve were verified by level gauge and laser displacement sensor. The results show that the shape-sensing array has the advantages of easy installation, good data accuracy and, excellent real-time performance for bridge deflection monitoring. This technology can accurately obtain bridge deflections and invert the curvature of deflection in real-time, which can effectively evaluate the performance and quality of a bridge.
-
Key words:
- bridge deflection /
- iFEM /
- shape-sensing array /
- structural monitoring /
- Bernoulli-Euler beam
-
表 1 各个测点应变值
Table 1. Strain of measuring point
测点 应变/(×10−5) 测点 应变/(×10−5) 1 −0.74 7 3.09 2 1.98 8 −2.67 3 1.51 9 −3.05 4 −3.07 10 1.19 5 −2.76 11 1.87 6 3.07 12 0.37 表 2 结果对比
Table 2. Comparison of results
支座 还原位移/mm ANSYS结果/mm 固定支座 0.000 0 1号支座 0.203 0 2号支座 −5.139 −5 3号支座 0.296 0 4号支座 −5.133 −5 5号支座 0.183 0 6号支座 0.072 0 -
[1] 中国公路学报编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1 − 97. doi: 10.3969/j.issn.1001-7372.2021.02.002Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021 [J]. China Journal of Highway and Transport, 2021, 34(2): 1 − 97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.02.002 [2] 李文杰, 赵君黎. 发展中的中国桥梁——张喜刚谈中国桥梁的现状与展望[J]. 中国公路, 2018(13): 64 − 68. doi: 10.3969/j.issn.1006-3897.2018.13.024LI Wenjie, ZHAO Junli. Chinese bridges in development——Zhang Xigang's status quo and prospect of Chinese bridges [J]. China Highway, 2018(13): 64 − 68. (in Chinese) doi: 10.3969/j.issn.1006-3897.2018.13.024 [3] 陈炳聪, 黄海云, 刘嘉玲, 等. 亚健康简支T梁桥限载指标评估及验证[J]. 工程力学, 2020, 37(增刊): 68 − 74. doi: 10.6052/j.issn.1000-4750.2019.04.S009CHEN Bingcong, HUANG Haiyun, LIU Jialing, et al. Evaluation and verification of limited load index of sub-health simply supported T beam bridge [J]. Engineering Mechanics, 2020, 37(Suppl): 68 − 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S009 [4] 郑元勋, 郭慧吉, 谢宁. 基于统计分析的桥梁坍塌事故原因剖析及预防措施研究[J]. 中外公路, 2017, 37(6): 125 − 132.ZHENG Yuanxun, GUO Huiji, XIE Ning. Cause analysis and preventive measures of bridge collapse based on statistical analysis [J]. Journal of China & Foreign Highway, 2017, 37(6): 125 − 132. (in Chinese) [5] 李宏男, 田亮, 伊廷华, 等. 大跨斜拱桥结构健康监测系统的设计与开发[J]. 振动工程学报, 2015, 28(4): 574 − 584.LI Hongnan, TIAN Liang, YI Tinghua, et al. Design and development of structural health monitoring system for long span skew arch bridge [J]. Journal of Vibration Engineering, 2015, 28(4): 574 − 584. (in Chinese) [6] 牛艳伟, 石雪飞, 欣阮. 大跨径混凝土梁桥的长期挠度实测分析[J]. 工程力学, 2008, 25(增刊 Ⅰ): 116 − 119.NIU Yanwei, SHI Xuefei, RUAN Xin. Measured sustained deflection analysis of long-span prestressed concrete beam bridges [J]. Engineering Mechanics, 2008, 25(Suppl Ⅰ): 116 − 119. (in Chinese) [7] 周毅, 孙利民, 符振慧, 等. 斜拉桥跨中竖向位移的温度灵敏度系数研究[J]. 工程力学, 2020, 37(6): 148 − 154. doi: 10.6052/j.issn.1000-4750.2019.08.0437ZHOU Yi, SUN Limin, FU Zhenhui, et al. Study on temperature sensitivity coefficients of mid-span vertical displacement of cable-stayed bridges [J]. Engineering Mechanics, 2020, 37(6): 148 − 154. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0437 [8] 孙丰春. 大跨径桥梁挠度变形监测技术应用实践[J]. 海洋测绘, 2020, 40(4): 77 − 82. doi: 10.3969/j.issn.1671-3044.2020.04.017SUN Fengchun. Technical application and practice in deflection of long-span bridges [J]. Hydrographic Surveying and Charting, 2020, 40(4): 77 − 82. (in Chinese) doi: 10.3969/j.issn.1671-3044.2020.04.017 [9] 张文基, 刘喜元, 岳建平. 大跨径桥梁挠度观测方法评述[J]. 测绘通报, 2002(8): 41 − 42. doi: 10.3969/j.issn.0494-0911.2002.08.014ZHANG Wenji, LIU Xiyuan, YUE Jianping. A review of surveying methods for flexibility of large span bridge [J]. Bulletin of Surveying and Mapping, 2002(8): 41 − 42. (in Chinese) doi: 10.3969/j.issn.0494-0911.2002.08.014 [10] 杨建春, 陈伟民. 桥梁结构挠度自动监测技术的现状与发展[J]. 传感器与微系统, 2006, 25(9): 1 − 3. doi: 10.3969/j.issn.1000-9787.2006.09.001YANG Jianchun, CHEN Weimin. Status and development of auto-monitoring technology for bridge deflection [J]. Transducer and Microsystem Technologies, 2006, 25(9): 1 − 3. (in Chinese) doi: 10.3969/j.issn.1000-9787.2006.09.001 [11] 文雪中. 大型桥梁挠度监测的方法比较及实践[J]. 测绘地理信息, 2016, 41(5): 70 − 73.WEN Xuezhong. Comparison and practice of deflection monitoring methods in the long-span bridge [J]. Journal of Geomatics, 2016, 41(5): 70 − 73. (in Chinese) [12] 李宏男, 伊廷华, 伊晓东, 等. 采用GPS与全站仪对大跨斜拉桥进行变形监测[J]. 防灾减灾工程学报, 2005, 25(1): 8 − 13.LI Hongnan, YI Tinghua, YI Xiaodong, et al. Integration of GPS and total station technology for deformation monitoring of long-span bridge [J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25(1): 8 − 13. (in Chinese) [13] XU Y, BROWNJOHN J M W. Vision-based systems for structural deformation measurement: Case studies [J]. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 2018, 171(12): 917 − 930. doi: 10.1680/jstbu.17.00134 [14] 熊伟, 赵敏, 吴迪军. 港珠澳大桥首级GPS控制网建立与复测研究[J]. 导航定位学报, 2019, 7(1): 117 − 120.XIONG Wei, ZHAO Min, WU Dijun. Study on establishment and repetition survey of the first order GPS control network of Hong Kong-Zhuhai-Macao Bridge [J]. Journal of Navigation and Positioning, 2019, 7(1): 117 − 120. (in Chinese) [15] 朱前坤, 陈建邦, 张琼, 等. 基于计算机视觉人行桥挠度影响线非接触式识别[J]. 工程力学, 2021, 38(8): 145 − 153. doi: 10.6052/j.issn.1000-4750.2020.08.0557ZHU Qiankun, CHEN Jianbang, ZHANG Qiong, et al. A non-contact recognition for deflection influence line of footbridge based on computer vision [J]. Engineering Mechanics, 2021, 38(8): 145 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0557 [16] AMANZADEH M, AMINOSSADATI S M, KIZIL M S, et al. Recent developments in fibre optic shape sensing [J]. Measurement, 2018, 128: 119 − 137. [17] THOMAS J, GURUSAMY S, RAJANNA T R, et al. Structural shape estimation by mode shapes using fiber Bragg grating sensors: A genetic algorithm approach [J]. IEEE Sensors Journal, 2020, 20(6): 2945 − 2952. doi: 10.1109/JSEN.2019.2934366 [18] KIM H I, KANG L H, HAN J H. Shape estimation with distributed fiber Bragg grating sensors for rotating structures [J]. Smart Materials and Structures, 2011, 20(3): 35011. doi: 10.1088/0964-1726/20/3/035011 [19] 张合生. 基于正交离散FBG网络的柔板结构形态感知与重构研究[D]. 上海: 上海大学, 2015.ZHANG Hesheng. Shape perception and reconstruction for flexible plate structure based on discrete orthogonal FBG network [D]. Shanghai: Shanghai University, 2015. (in Chinese) [20] TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(2/3/4/5): 327 − 339. doi: 10.1016/j.cma.2004.03.015 [21] CERRACCHIO P, GHERLONE M, DI SCIUVA M, et al. Shape and stress sensing of multilayered composite and sandwich structures using an inverse finite element method [C]. Barcelona Spain: V International Conference on Computational Methods for Coupled Problems in Science and Engineering, 2013: 311 − 322. [22] GHERLONE M, CERRACCHIO P, MATTONE M, et al. Shape sensing of 3D frame structures using an inverse finite element method [J]. International Journal of Solids and Structures, 2012, 49(22): 3100 − 3112. doi: 10.1016/j.ijsolstr.2012.06.009 [23] 蔡鹏越. 用于结构位移场重构的逆有限元法研究[D]. 南京: 南京航空航天大学, 2016.CAI Pengyue. Investigation on the inverse FEM for structural displacement reconstruction [D]. Nanjing: Nanjing University of Aeronautics And Astronautics, 2016. (in Chinese) [24] YOU R Z, REN L, YUAN C L, et al. Two-dimensional deformation estimation of beam-like structures using inverse finite-element method: Theoretical study and experimental validation [J]. Journal of Engineering Mechanics, 2021, 147(5): 4021019. doi: 10.1061/(ASCE)EM.1943-7889.0001917 -