[1] |
STASZEWSKI W J, LEE B C, TRAYNOR R. Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry [J]. Measurement Science and Technology, 2007, 18(3): 727. doi: 10.1088/0957-0233/18/3/024
|
[2] |
SERRANO A M, WELSGH G E, GIBALA R. An electrical method of measuring crack length during crack propagation tests of polymers [J]. Polymer Engineering and Science, 1982, 22(15): 934 − 936. doi: 10.1002/pen.760221505
|
[3] |
IHN J B, CHANG F K. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics [J]. Smart Material Structures, 2004, 13(3): 609. doi: 10.1088/0964-1726/13/3/020
|
[4] |
方钦志, 赵明皞, 韩素兰. 工程机械用钢焊后疲劳断裂特性研究[J]. 工程力学, 2000, 17(5): 102 − 106.FANG Qinzhi, ZHAO Minghao, HAN Sulan. Research on fatigue crack growth of steels used in construction machinery [J]. Engineering Mechanics, 2000, 17(5): 102 − 106. (in Chinese)
|
[5] |
CRANCH G A, JOHNSON L, ALGREN M, et al. Crack detection in riveted lap joints using fiber laser acoustic emission sensors [J]. Optics Express, 2017, 25(16): 19457 − 19467. doi: 10.1364/OE.25.019457
|
[6] |
董晋鹏, 杨圣奇, 李斌, 等. 共面双裂隙类岩石材料抗拉强度试验研究[J]. 工程力学, 2020, 37(3): 188 − 201. doi: 10.6052/j.issn.1000-4750.2019.04.0232DONG Jinpeng, YANG Shengqi, LI Bin, et al. Experimental study on the tensile strength of rock-like materials containing two pre-existing coplanar fissures [J]. Engineering Mechanics, 2020, 37(3): 188 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0232
|
[7] |
刘宁, 胡梦凡, 周飞. 基于键基近场动力学理论的单裂纹圆孔板冲击破坏研究[J]. 工程力学, 2020, 37(12): 9 − 17. doi: 10.6052/j.issn.1000-4750.2020.02.0076LIU Ning, HU Mengfan, ZHOU Fei. The impacted damage study of a single cleavage drilled compression specimen based on bond-based peridynamics [J]. Engineering Mechanics, 2020, 37(12): 9 − 17. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0076
|
[8] |
MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: A survey [J]. International Journal of Computer Vision, 2021, 129(1): 23 − 79.
|
[9] |
WU C, FAN W, HE Y, et al. Cascaded heterogeneous convolutional neural networks for handwritten digit recognition [C]// 2012 IEEE International Conference on Pattern Recognition (ICPR). Tsukuba Science City, Japan, IEEE, 2012.
|
[10] |
SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification [C]// Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba Science City, Japan, IEEE, 2012.
|
[11] |
LECUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, IEEE, 2004.
|
[12] |
CIREAAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification [J]. Neural Networks, 2012, 32: 333 − 338. doi: 10.1016/j.neunet.2012.02.023
|
[13] |
SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks [C]// The 2011 International Joint Conference on Neural Networks. San Jose California, USA, IEEE, 2011.
|
[14] |
DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database [C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami FL, USA, IEEE, 2009.
|
[15] |
JARRETT K, KAVUKCUOGLU K, RANZATO M A, et al. What is the best multi-stage architecture for object recognition? [C]// 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan, IEEE, 2009.
|
[16] |
RASTEGARI M, ORDONEZ V, REDMON J, et al. Xnor-net: Imagenet classification using binary convolutional neural networks [C]// European Conference on Computer Vision. Amsterdam, The Netherlands, Springer, 2016.
|
[17] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25: 1097 − 1105.
|
[18] |
CHEN F C, JAHANSHAHI M R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion [J]. IEEE Transactions on Industrial Electronics, 2017, 65(5): 4392 − 4400.
|
[19] |
JIANG C, WANG Y, WANG J, et al. Achieving ultrasensitive in vivo detection of bone crack with polydopamine-capsulated surface-enhanced Raman nanoparticle [J]. Biomaterials, 2017, 114: 54 − 61. doi: 10.1016/j.biomaterials.2016.11.007
|
[20] |
BROBERG P. Surface crack detection in welds using thermography [J]. NDT & E International, 2013, 57: 69 − 73.
|
[21] |
KONG X, LI J. Vision-based fatigue crack detection of steel structures using video feature tracking [J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 799.
|
[22] |
CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks [J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361 − 378. doi: 10.1111/mice.12263
|
[23] |
NEOGI N, MOHANTA D K, DUTTA P K. Review of vision-based steel surface inspection systems [J]. EURASIP Journal on Image and Video Processing, 2014, 2014(1): 1 − 19. doi: 10.1186/1687-5281-2014-1
|
[24] |
ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems[J]. Arxiv Preprint ArXiv: 1603.04467, 2016.
|
[25] |
HU H, LIANG J, XIAO Z, et al. A four-camera videogrammetric system for 3-D motion measurement of deformable object [J]. Optics and Lasers in Engineering, 2012, 50(5): 800 − 811. doi: 10.1016/j.optlaseng.2011.12.011
|
[26] |
RAGHAVENDRA U, FUJITA H, BHANDARY S V, et al. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images [J]. Information Sciences, 2018, 441: 41 − 49. doi: 10.1016/j.ins.2018.01.051
|
[27] |
BENGIO Y. Practical recommendations for gradient-based training of deep architectures [M]// Neural networks: Tricks of the trade. Heidelberg, Berlin: Springer, 2012: 437 − 478.
|
[28] |
SCHERER D, MÜLLER A, BEHNKE S. Evaluation of pooling operations in convolutional architectures for object recognition [C]// International Conference on Artificial Neural Networks. Heidelberg, Berlin, Springer, 2010: 92 − 101.
|
[29] |
LIEW S S, KHALIL-HANI M, BAKHTERI R. Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems [J]. Neurocomputing, 2016, 216: 718 − 734. doi: 10.1016/j.neucom.2016.08.037
|
[30] |
MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models [C]// The 30th International Conference on Machine Learning. Atlanta, USA, Microtome Publishing, 2013.
|
[31] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. The Journal of Machine Learning Research, 2014, 15(1): 1929 − 1958.
|
[32] |
GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep learning [M]. Cambridge: MIT Press, 2016.
|
[33] |
IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]// International Conference on Machine Learning. Lille, France, PMLR, 2015.
|
[34] |
GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks [C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada, IEEE, 2013.
|
[35] |
SPECHT D F. Probabilistic neural networks [J]. Neural Networks, 1990, 3(1): 109 − 118. doi: 10.1016/0893-6080(90)90049-Q
|
[36] |
LI R, ZHAO Y, CHEN J, et al. Canny threshold selection algorithm based on the second derivative of image gradient [C]// 2018 International Conference on Information Systems and Computer Aided Education. Changchun, Jilin, China: IEEE, 2018.
|
[37] |
RONG W, LI Z, ZHANG W, et al. An improved canny edge detection algorithm [C]// 2014 IEEE International Conference on Mechatronics and Automation. Tianjin, IEEE, 2014.
|
[38] |
CHEN X, CHEN H. A novel color edge detection algorithm in RGB color space [C]// IEEE 10th International Conference on Signal Processing Proceedings. Beijing, IEEE, 2010.
|
[39] |
SU H, YUAN X. An improved canny edge detection algorithm [J]. Computer Simulation, 2010, 10: 577 − 582.
|
[40] |
DENG G, CAHILL L W. An adaptive gaussian filter for noise reduction and edge detection [C]// 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference. Florida, USA, IEEE, 1993.
|
[41] |
XUAN L, HONG Z. An improved canny edge detection algorithm [C]// 2017 8th IEEE International Conference on Software Engineering and Service Science. Beijing, IEEE, 2017.
|
[42] |
RODRIGUEZ J A, PERRONNIN F. Local gradient histogram features for word spotting in unconstrained handwritten documents [J]. Proc. 1st ICFHR, 2008: 7 − 12.
|
[43] |
WOLF E. Fatigue crack closure under cyclic tension [J]. Engineering Fracture Mechanics, 1970, 2(1): 37 − 45. doi: 10.1016/0013-7944(70)90028-7
|
[44] |
梁晋, 肖振中, 唐正宗, 等. 大型飞机风洞变形测量的相机标定研究[J]. 西安交通大学学报, 2009, 43(3): 55 − 59. doi: 10.3321/j.issn:0253-987X.2009.03.012LIANG Jin, XIAO Zhenzhong, TANG Zhengzong, et, al. Large space camera calibration for three-dimensional videogrammetric vibration measurement of large aeroplane model in wind tunnels [J]. Journal of Xi’an Jiaotong University, 2009, 43(3): 55 − 59. (in Chinese) doi: 10.3321/j.issn:0253-987X.2009.03.012
|
[45] |
GUO X, LIANG J, XIAO Z, et al. Digital image correlation for large deformation applied in Ti alloy compression and tension test [J]. Optik, 2014, 125(18): 5316 − 5322. doi: 10.1016/j.ijleo.2014.06.067
|
[46] |
TANG Z, LIANG J, XIAO Z, et al. Three-dimensional digital image correlation system for deformation measurement in experimental mechanics [J]. Optical Engineering, 2010. 49(10): 103601.
|