留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字图像的裂纹测量系统在X80管线钢全尺寸弯曲试验中的验证

张良 王高峰 杨锋平 郭翔 袁莹涛 苏鑫

张良, 王高峰, 杨锋平, 郭翔, 袁莹涛, 苏鑫. 基于数字图像的裂纹测量系统在X80管线钢全尺寸弯曲试验中的验证[J]. 工程力学, 2022, 39(11): 157-165. doi: 10.6052/j.issn.1000-4750.2021.06.0464
引用本文: 张良, 王高峰, 杨锋平, 郭翔, 袁莹涛, 苏鑫. 基于数字图像的裂纹测量系统在X80管线钢全尺寸弯曲试验中的验证[J]. 工程力学, 2022, 39(11): 157-165. doi: 10.6052/j.issn.1000-4750.2021.06.0464
ZHANG Liang, WANG Gao-feng, YANG Feng-ping, GUO Xiang, YUAN Ying-tao, SU Xin. VERIFICATION OF A CRACK MEASUREMENT SYSTEM BASED ON DIGITAL IMAGES IN FULL-SCALE BENDING TEST OF X80 PIPELINE STEEL[J]. Engineering Mechanics, 2022, 39(11): 157-165. doi: 10.6052/j.issn.1000-4750.2021.06.0464
Citation: ZHANG Liang, WANG Gao-feng, YANG Feng-ping, GUO Xiang, YUAN Ying-tao, SU Xin. VERIFICATION OF A CRACK MEASUREMENT SYSTEM BASED ON DIGITAL IMAGES IN FULL-SCALE BENDING TEST OF X80 PIPELINE STEEL[J]. Engineering Mechanics, 2022, 39(11): 157-165. doi: 10.6052/j.issn.1000-4750.2021.06.0464

基于数字图像的裂纹测量系统在X80管线钢全尺寸弯曲试验中的验证

doi: 10.6052/j.issn.1000-4750.2021.06.0464
基金项目: 国家自然科学基金项目(12072279,11602201)
详细信息
    作者简介:

    张 良(1986−),男,陕西人,高工,硕士,主要从事油气管道完整性评价与失效分析研究(E-mail: zhangliang008@cnpc.com.cn)

    王高峰(1981−),男,陕西人,高工,硕士,主要从事油气管道完整性评价与性能研究(E-mail: wanggaofeng610@126.com)

    杨锋平(1985−),男,陕西人,高工,博士,主要从事油气管道完整性评价与失效分析研究(E-mail: dragon714cn@163.com)

    郭 翔(1984−),男,陕西人,讲师,博士,主要从事光测实验力学研究(E-mail: guoxiang1984@nwpu.edu.cn)

    苏 鑫(1997−),男,四川人,硕士生,主要从事光测实验力学研究(E-mail: suxin.ds@mail.nwpu.edu.cn)

    通讯作者:

    袁莹涛(1994−),男,河南人,博士生,主要从事光测实验力学研究(E-mail: yuanyingtao@mail.nwpu.edu.cn)

  • 中图分类号: V556.5

VERIFICATION OF A CRACK MEASUREMENT SYSTEM BASED ON DIGITAL IMAGES IN FULL-SCALE BENDING TEST OF X80 PIPELINE STEEL

  • 摘要: 该文提出一种测量结构变形过程中裂纹扩展长度的方法。搭建一种卷积神经网络来抵抗图像中噪声干扰并识别裂纹特征,通过卷积神经网络预测得到裂纹带的初始区域;基于该区域,又提出一种改进的裂纹尖端识别算法来计算裂纹尖端的精确位置坐标;根据位置坐标得到裂纹长度信息。通过增加摄像机的数量,可以同时检测不同位置和方向的裂纹。利用该文提出的方法可以得到裂纹扩展长度与加载信息(如疲劳周期)之间的关系。通过开展中心孔试样疲劳试验和X80管线钢全尺寸弯曲试验,验证了该方法的有效性和准确性。
  • 图  1  本文提出的方法流程

    Figure  1.  Flowchart of proposed method

    图  2  裂纹和非裂纹图像示例

    Figure  2.  Examples of crack and non-crack images

    图  3  提出的CNN架构

    Figure  3.  Architecture of proposed CNN

    图  4  卷积示例

    Figure  4.  Example of convolutional layer

    图  5  池化示例

    Figure  5.  Example of pooling layer

    图  6  CNN检测结果

    Figure  6.  Results after CNN detection

    图  7  训练过程中训练集和验证集的准确性

    Figure  7.  Traces of training and validation accuracy

    图  8  Canny检测尖端区域

    Figure  8.  Canny detector for tip area

    图  9  Sobel与本文方法的检测器比较

    Figure  9.  Detector comparison of Sobel and proposed method

    图  10  带中心孔的试样

    Figure  10.  Specimen with a central hole

    图  11  摄像机视图

    Figure  11.  Camera view

    图  12  中心孔试样裂纹检测结果

    Figure  12.  Results of crack length measurement for central hole specimen

    图  13  变形实验现场

    Figure  13.  Experimental environment

    图  14  三维全场轴向应变场测量结果

    Figure  14.  Results of three-dimensional deformation measurement

    图  15  裂纹扩展长度结果

    Figure  15.  Results of crack propagation length

  • [1] STASZEWSKI W J, LEE B C, TRAYNOR R. Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry [J]. Measurement Science and Technology, 2007, 18(3): 727. doi: 10.1088/0957-0233/18/3/024
    [2] SERRANO A M, WELSGH G E, GIBALA R. An electrical method of measuring crack length during crack propagation tests of polymers [J]. Polymer Engineering and Science, 1982, 22(15): 934 − 936. doi: 10.1002/pen.760221505
    [3] IHN J B, CHANG F K. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics [J]. Smart Material Structures, 2004, 13(3): 609. doi: 10.1088/0964-1726/13/3/020
    [4] 方钦志, 赵明皞, 韩素兰. 工程机械用钢焊后疲劳断裂特性研究[J]. 工程力学, 2000, 17(5): 102 − 106.

    FANG Qinzhi, ZHAO Minghao, HAN Sulan. Research on fatigue crack growth of steels used in construction machinery [J]. Engineering Mechanics, 2000, 17(5): 102 − 106. (in Chinese)
    [5] CRANCH G A, JOHNSON L, ALGREN M, et al. Crack detection in riveted lap joints using fiber laser acoustic emission sensors [J]. Optics Express, 2017, 25(16): 19457 − 19467. doi: 10.1364/OE.25.019457
    [6] 董晋鹏, 杨圣奇, 李斌, 等. 共面双裂隙类岩石材料抗拉强度试验研究[J]. 工程力学, 2020, 37(3): 188 − 201. doi: 10.6052/j.issn.1000-4750.2019.04.0232

    DONG Jinpeng, YANG Shengqi, LI Bin, et al. Experimental study on the tensile strength of rock-like materials containing two pre-existing coplanar fissures [J]. Engineering Mechanics, 2020, 37(3): 188 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0232
    [7] 刘宁, 胡梦凡, 周飞. 基于键基近场动力学理论的单裂纹圆孔板冲击破坏研究[J]. 工程力学, 2020, 37(12): 9 − 17. doi: 10.6052/j.issn.1000-4750.2020.02.0076

    LIU Ning, HU Mengfan, ZHOU Fei. The impacted damage study of a single cleavage drilled compression specimen based on bond-based peridynamics [J]. Engineering Mechanics, 2020, 37(12): 9 − 17. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0076
    [8] MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: A survey [J]. International Journal of Computer Vision, 2021, 129(1): 23 − 79.
    [9] WU C, FAN W, HE Y, et al. Cascaded heterogeneous convolutional neural networks for handwritten digit recognition [C]// 2012 IEEE International Conference on Pattern Recognition (ICPR). Tsukuba Science City, Japan, IEEE, 2012.
    [10] SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification [C]// Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba Science City, Japan, IEEE, 2012.
    [11] LECUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, IEEE, 2004.
    [12] CIREAAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification [J]. Neural Networks, 2012, 32: 333 − 338. doi: 10.1016/j.neunet.2012.02.023
    [13] SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks [C]// The 2011 International Joint Conference on Neural Networks. San Jose California, USA, IEEE, 2011.
    [14] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database [C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami FL, USA, IEEE, 2009.
    [15] JARRETT K, KAVUKCUOGLU K, RANZATO M A, et al. What is the best multi-stage architecture for object recognition? [C]// 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan, IEEE, 2009.
    [16] RASTEGARI M, ORDONEZ V, REDMON J, et al. Xnor-net: Imagenet classification using binary convolutional neural networks [C]// European Conference on Computer Vision. Amsterdam, The Netherlands, Springer, 2016.
    [17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25: 1097 − 1105.
    [18] CHEN F C, JAHANSHAHI M R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion [J]. IEEE Transactions on Industrial Electronics, 2017, 65(5): 4392 − 4400.
    [19] JIANG C, WANG Y, WANG J, et al. Achieving ultrasensitive in vivo detection of bone crack with polydopamine-capsulated surface-enhanced Raman nanoparticle [J]. Biomaterials, 2017, 114: 54 − 61. doi: 10.1016/j.biomaterials.2016.11.007
    [20] BROBERG P. Surface crack detection in welds using thermography [J]. NDT & E International, 2013, 57: 69 − 73.
    [21] KONG X, LI J. Vision-based fatigue crack detection of steel structures using video feature tracking [J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 799.
    [22] CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks [J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361 − 378. doi: 10.1111/mice.12263
    [23] NEOGI N, MOHANTA D K, DUTTA P K. Review of vision-based steel surface inspection systems [J]. EURASIP Journal on Image and Video Processing, 2014, 2014(1): 1 − 19. doi: 10.1186/1687-5281-2014-1
    [24] ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems[J]. Arxiv Preprint ArXiv: 1603.04467, 2016.
    [25] HU H, LIANG J, XIAO Z, et al. A four-camera videogrammetric system for 3-D motion measurement of deformable object [J]. Optics and Lasers in Engineering, 2012, 50(5): 800 − 811. doi: 10.1016/j.optlaseng.2011.12.011
    [26] RAGHAVENDRA U, FUJITA H, BHANDARY S V, et al. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images [J]. Information Sciences, 2018, 441: 41 − 49. doi: 10.1016/j.ins.2018.01.051
    [27] BENGIO Y. Practical recommendations for gradient-based training of deep architectures [M]// Neural networks: Tricks of the trade. Heidelberg, Berlin: Springer, 2012: 437 − 478.
    [28] SCHERER D, MÜLLER A, BEHNKE S. Evaluation of pooling operations in convolutional architectures for object recognition [C]// International Conference on Artificial Neural Networks. Heidelberg, Berlin, Springer, 2010: 92 − 101.
    [29] LIEW S S, KHALIL-HANI M, BAKHTERI R. Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems [J]. Neurocomputing, 2016, 216: 718 − 734. doi: 10.1016/j.neucom.2016.08.037
    [30] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models [C]// The 30th International Conference on Machine Learning. Atlanta, USA, Microtome Publishing, 2013.
    [31] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. The Journal of Machine Learning Research, 2014, 15(1): 1929 − 1958.
    [32] GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep learning [M]. Cambridge: MIT Press, 2016.
    [33] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]// International Conference on Machine Learning. Lille, France, PMLR, 2015.
    [34] GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks [C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada, IEEE, 2013.
    [35] SPECHT D F. Probabilistic neural networks [J]. Neural Networks, 1990, 3(1): 109 − 118. doi: 10.1016/0893-6080(90)90049-Q
    [36] LI R, ZHAO Y, CHEN J, et al. Canny threshold selection algorithm based on the second derivative of image gradient [C]// 2018 International Conference on Information Systems and Computer Aided Education. Changchun, Jilin, China: IEEE, 2018.
    [37] RONG W, LI Z, ZHANG W, et al. An improved canny edge detection algorithm [C]// 2014 IEEE International Conference on Mechatronics and Automation. Tianjin, IEEE, 2014.
    [38] CHEN X, CHEN H. A novel color edge detection algorithm in RGB color space [C]// IEEE 10th International Conference on Signal Processing Proceedings. Beijing, IEEE, 2010.
    [39] SU H, YUAN X. An improved canny edge detection algorithm [J]. Computer Simulation, 2010, 10: 577 − 582.
    [40] DENG G, CAHILL L W. An adaptive gaussian filter for noise reduction and edge detection [C]// 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference. Florida, USA, IEEE, 1993.
    [41] XUAN L, HONG Z. An improved canny edge detection algorithm [C]// 2017 8th IEEE International Conference on Software Engineering and Service Science. Beijing, IEEE, 2017.
    [42] RODRIGUEZ J A, PERRONNIN F. Local gradient histogram features for word spotting in unconstrained handwritten documents [J]. Proc. 1st ICFHR, 2008: 7 − 12.
    [43] WOLF E. Fatigue crack closure under cyclic tension [J]. Engineering Fracture Mechanics, 1970, 2(1): 37 − 45. doi: 10.1016/0013-7944(70)90028-7
    [44] 梁晋, 肖振中, 唐正宗, 等. 大型飞机风洞变形测量的相机标定研究[J]. 西安交通大学学报, 2009, 43(3): 55 − 59. doi: 10.3321/j.issn:0253-987X.2009.03.012

    LIANG Jin, XIAO Zhenzhong, TANG Zhengzong, et, al. Large space camera calibration for three-dimensional videogrammetric vibration measurement of large aeroplane model in wind tunnels [J]. Journal of Xi’an Jiaotong University, 2009, 43(3): 55 − 59. (in Chinese) doi: 10.3321/j.issn:0253-987X.2009.03.012
    [45] GUO X, LIANG J, XIAO Z, et al. Digital image correlation for large deformation applied in Ti alloy compression and tension test [J]. Optik, 2014, 125(18): 5316 − 5322. doi: 10.1016/j.ijleo.2014.06.067
    [46] TANG Z, LIANG J, XIAO Z, et al. Three-dimensional digital image correlation system for deformation measurement in experimental mechanics [J]. Optical Engineering, 2010. 49(10): 103601.
  • 加载中
图(15)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  113
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 修回日期:  2021-09-18
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回