A NOVEL PERFORMANCE-BASED SEISMIC DESIGN METHOD AND ITS APPLICATION IN BRB STEEL FRAMES
-
摘要: 该文围绕防屈曲支撑钢框架结构提出了一种新的抗震性能化设计方法。在选取性能目标时,为了兼顾建筑中结构主体和非结构成分的地震安全,该方法选取了峰值层间位移角、峰值楼面加速度和残余层间位移角共同作为性能目标。以等效单自由度体系的弹塑性时程分析计算结果进行参数分析,掌握防屈曲支撑钢框架结构随基本周期和强度折减系数变化的地震响应规律;根据结构动力学理论将单自由度体系的计算结果推广至多自由度体系;基于此发展出一种新的抗震性能化设计方法。为演示和论证该方法的有效性,该文选取了一栋六层防屈曲支撑钢框架结构的基准模型进行抗震设计,并开展一组地震动作用下的弹塑性时程分析。抗震性能评估的结果表明:由该方法设计的结构能够较好地同时满足多个设计目标的要求。该文的设计方法对于其他类型结构的抗震设计也具有一定的借鉴价值。Abstract: A performance-based seismic design method for buckling-restrained braced steel frames is proposed. Its three performance targets are in terms of the peak interstory drift ratio, the peak floor acceleration and the residual interstory drift ratio respectively, and it aims to ensure the seismic safety of structural and nonstructural components. Through the parametric analyses of equivalent single-degree-of-freedom (SDOF) systems, the relationships between the seismic response indexes and the fundamental period, as well as the strength reduction factor, are built. Then the SDOF-based results are incorporated into the multi-degree-of-freedom systems, and the design method is developed. To demonstrate and validate the method, this study conducts seismic design for a six-story benchmark buckling-restrained braced frame (BRBF) which are subjected to a suite of earthquake records. The performance evaluation indicates that the properly designed BRBF meets three performance targets at the same time. This study also sheds light on the seismic design of other types of buildings.
-
表 1 BRB的力学性能
Table 1. Mechanical properties of BRB
楼层 力学性能 屈服强度/kN 轴向刚度/(kN/mm) 6 246.4 36.4 5 386.4 57.1 4 487.8 72.1 3 561.1 82.9 2 610.7 90.2 1 754.4 94.4 -
[1] 汪家铭, 中岛正爱, 陆烨. 屈曲约束支撑体系的应用与研究进展(Ⅰ)[J]. 建筑钢结构进展, 2005, 7(1): 1 − 12. doi: 10.3969/j.issn.1671-9379.2005.01.001UANG C M, NAKASHIMA M, LU Ye. The practice and research development of buckling-restrained braced frames(I) [J]. Progress in Steel Building Structures, 2005, 7(1): 1 − 12. (in Chinese) doi: 10.3969/j.issn.1671-9379.2005.01.001 [2] 周云, 唐荣, 钟根全, 等. 防屈曲耗能支撑研究与应用的新进展[J]. 防灾减灾工程学报, 2012, 32(4): 393 − 407.ZHOU Yun, TANG Rong, ZHONG Genquan, et al. State-of-the-art and state-of-the-practice of buckling-restrained brace [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(4): 393 − 407. (in Chinese) [3] MOEHLE J, DEIERLEIN G G. A framework methodology for performance-based earthquake engineering [C]// Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, B. C., Canada, 2004. [4] 钱稼茹, 罗文斌. 建筑结构基于位移的抗震设计[J]. 建筑结构, 2001(4): 3 − 6. doi: 10.19701/j.jzjg.2001.04.001QIAN Jiaru, LUO Wenbin. Displacement-based seismic design of building structures [J]. Building Structures, 2001(4): 3 − 6. (in Chinese) doi: 10.19701/j.jzjg.2001.04.001 [5] PRIESTLEY M J N, CALVI G M, KOWALSKY M J. Displacement based seismic design of structures [M]. Pavia: IUSS Press, 2007. [6] 李钢, 李宏男. 基于位移的消能减震结构抗震设计方法[J]. 工程力学, 2007, 24(9): 88 − 94. doi: 10.3969/j.issn.1000-4750.2007.09.014LI Gang, LI Hongnan. Direct displacement-based design for buildings with passive energy dissipation devices [J]. Engineering Mechanics, 2007, 24(9): 88 − 94. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.09.014 [7] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2): 59 − 66, 75. doi: 10.6052/j.issn.1000-4750.2016.09.0731YANG Boya, LÜ Xilin. Direct displacement-based aseismic design and application for prestressed precast concrete shear-wall structures [J]. Engineering Mechanics, 2018, 35(2): 59 − 66, 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.09.0731 [8] 简斌, 翁健, 金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 − 211, 225.JIAN Bin, WENG Jian, JIN Yunfei. Direct displacement-based seismic design for prestressed concrete frame structures [J]. Engineering Mechanics, 2010, 27(7): 205 − 211, 225. (in Chinese) [9] 徐龙河, 杨雪飞. 自复位支撑钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141 − 148. doi: 10.6052/j.issn.1000-4750.2018.07.0406XU Longhe, YANG Xuefei. Direct displacement-based brace parameters design and analysis of steel frame with self-centering braces [J]. Engineering Mechanics, 2019, 36(8): 141 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0406 [10] 李国强, 冯健. 罕遇地震下多高层建筑钢结构弹塑性位移的实用计算[J]. 建筑结构学报, 2000, 21(1): 77 − 83. doi: 10.3321/j.issn:1000-6869.2000.01.013LI Guoqiang, FENG Jian. A practical approach for estimating elastoplastic displacements of multistory and tall steel buildings under severe earthquakes [J]. Journal of Building Structures, 2000, 21(1): 77 − 83. (in Chinese) doi: 10.3321/j.issn:1000-6869.2000.01.013 [11] 王伟, 邹超, 陈以一, 等. 基于均匀层间位移的多层梁贯通式支撑钢框架简化抗震设计方法[J]. 建筑结构学报, 2016, 37(6): 107 − 114.WANG Wei, ZOU Chao, CHEN Yiyi, et al. Seismic design method of multistory concentrically braced beam-through frames aimed at uniform inter-story drift [J]. Journal of Building Structures, 2016, 37(6): 107 − 114. (in Chinese) [12] LIU L, LI S, ZHAO J. A novel non-iterative direct displacement-based seismic design procedure for self-centering buckling-restrained braced frame structures [J]. Bulletin of Earthquake Engineering, 2018, 16(11): 5591 − 5619. doi: 10.1007/s10518-018-0408-7 [13] QIU C, ZHU S. Performance-based seismic design of self-centering steel frames with SMA-based braces [J]. Engineering Structures, 2017, 130: 67 − 82. doi: 10.1016/j.engstruct.2016.09.051 [14] QIU C, QI J, CHEN C. Energy-based seismic design methodology of SMABFs using hysteretic energy spectrum [J]. Journal of Structural Engineering, 2020, 146: 04019207. doi: 10.1061/(ASCE)ST.1943-541X.0002515 [15] TERAN-GILMORE A, VIRTO-CAMBRAY N. Preliminary design of low-rise buildings stiffened with buckling-restrained braces by a displacement-based approach [J]. Earthquake Spectra, 2009, 25(1): 185 − 211. doi: 10.1193/1.3054638 [16] 白久林, 金双双, 欧进萍. 防屈曲支撑-钢筋混凝土框架结构基于能量平衡的抗震塑性设计[J]. 建筑结构学报, 2017, 38(1): 125 − 134.BAI Jiulin, JIN Shuangshuang, OU Jinping. Seismic plastic design of buckling-restrained braced-RC frame structures based on energy balance [J]. Journal of Building Structures, 2017, 38(1): 125 − 134. (in Chinese) [17] 潘毅, 阎勋章, 易路行, 等. 基于剪力比的防屈曲支撑-RC框架抗震设计方法研究[J]. 工程力学, 2018, 35(3): 96 − 105. doi: 10.6052/j.issn.1000-4750.2016.11.0854PAN Yi, YAN Xunzhang, YI Luxing, et al. Study on the seismic design of buckling-restrained braced-reinforced concrete frame structures based on shear force ratio [J]. Engineering Mechanics, 2018, 35(3): 96 − 105. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0854 [18] 贾明明, 吕大刚, 张素梅, 等. 防屈曲支撑钢框架基于延性的抗震性能设计[J]. 工程力学, 2010, 27(增刊 2): 201 − 206.JIA Mingming, LYU Dagang, ZHANG Sumei, et al. Seismic performance-based design based on ductility of buckling-restrained braced steel frame [J]. Engineering Mechanics, 2010, 27(Suppl 2): 201 − 206. (in Chinese) [19] SAHOO D R, CHAO S H. Performance-based plastic design method for buckling-restrained braced frames [J]. Engineering Structures, 2010, 32(9): 2950 − 2958. [20] CHRISTOPOULOS C, PAMPANIN S, PRIESTLEY M J N. Performance-based seismic response of frame structures including residual deformations Part I: single-degree of freedom systems [J]. Journal of Earthquake Engineering, 2008, 7(1): 97 − 118. [21] QIU C X, DU X L. Performance-based seismic design of multi-story CBFs equipped with SMA-friction damping braces [J]. Bulletin of Earthquake Engineering, 2021, 19(6): 2711 − 2737. doi: 10.1007/S10518-021-01060-W [22] CHOPRA A K. 结构动力学: 理论及其在地震工程中的应用[M]. 北京: 清华大学出版社, 2009.CHOPRA A K. Dynamics of structures: Theory and applications to earthquake engineering [M]. Beijing: Tsinghua University Press, 2009. (in Chinese) [23] SOMMERVILLE P. Development of ground motion time histories for Phase 2 of the FEAM/SAC steel project [R]. Sacramento, Calif: SAC Background Document SAC/BD-91/04, SAC Joint Venture, 1997. [24] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for seismic design of buildings [S]. Beijing: Building Industry Press of China, 2010. (in Chinese) [25] OpenSees. Open system for earthquake engineering simulation (OpenSees), v2.4. 1 [Computer software] [R]. Berkeley, CA: Pacific Earthquake Engineering Research Center, 2013. [26] CHOI H, KIM J. Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum [J]. Engineering Structures, 2006, 28(2): 304 − 311. doi: 10.1016/j.engstruct.2005.08.008 [27] American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures [R]. Reston, VA: American Society of Civil Engineers, 2010. [28] MCCORMICK J, ABURANO H, IKENAGA M, et al. Permissible residual deformation levels for building structures considering both safety and human elements [C]// Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, Seismological Press, 2008. [29] 刘晶波, 杜修力. 结构动力学[M]. 北京: 机械工业出版社, 2005.LIU Jingbo, DU Xiuli. Structural dynamics [M]. Beijing: China Machine Press, 2005. (in Chinese) [30] WIESER J, PEKCAN G, ZAGHI A E, et al. Floor accelerations in yielding special moment resisting frame structures [J]. Earthquake Spectra, 2013, 29(3): 987 − 1002. doi: 10.1193/1.4000167 [31] SABELLI R, MAHIN S A, CHANG C. Seismic demands on steel braced frame buildings with buckling-restrained braces [J]. Engineering Structures, 2003, 25(5): 655 − 666. doi: 10.1016/S0141-0296(02)00175-X [32] ASTM A992/A992M, Standard specification for structural steel shapes [S]. West Conshohocken, PA: ASTM, 2015. [33] TREMBLAY R, LACERTE M, CHRISTOPOULOS C. Seismic response of multistory buildings with self-centering energy dissipative steel braces [J]. Journal of Structural Engineering, 2008, 134(1): 108 − 120. doi: 10.1061/(ASCE)0733-9445(2008)134:1(108) -