ENERGY-BASED SEISMIC PERFORMANCE ANALYSIS OF PALACE-STYLE TIMBER FRAME OF TANG-DYNASTY
-
摘要: 唐代殿堂型木结构遗存在漫长历史进程中抵抗多次地震作用仍屹立不倒,表现出良好抗震性能。由于采用放松约束平摆浮搁柱脚节点及厚重大屋盖,水平地震作用下,木构架会发生反复摇摆抬升,存在能量转化问题,因此有必要通过构架中的能量分析进一步揭示其抗震机理。分析了地震作用下摇摆木构架中的能量平衡关系,建立了典型唐代殿堂型木构架精细化有限元模型并进行动力时程分析,通过木构架中的能量组成及变化规律分析揭示其抗震机理,同时研究了地震作用参数及斗拱-梁架一体化铺作层构造、柱头馒头榫弱连接节点形式、竖向荷载大小等结构参数对木构架中能量的影响。结果表明:地震作用下木构架摇摆变形过程中动能与重力势能及弹性应变能不断转化,并通过阻尼、摩擦及塑性变形耗散能量。由于“大屋盖”储能优势,输入的动能通过转化为重力势能存储于构架中,减轻构件损伤的同时也为其消耗地震能量争取了时间。影响参数分析结果表明:竖向荷载大小和地震波加速度幅值对木构架中能量影响较大,这两个参数值越大,木构架总输入能及阻尼耗能越大。Abstract: The palace-style timber frame of Tang Dynasty has been standing up for a long period, and it has good seismic performance. The timber frame will rock and lift repeatedly under horizontal earthquake excitations, which is associated with energy conversion due to the relaxed constraint floating column foot joint and the big roof. Therefore, it is necessary to further reveal its seismic mechanism through energy analysis of the timber frame. The energy balance relationship of the rocking timber frame under earthquake actions was analyzed. The refined finite element model of a typical palace-style timber frame of Tang Dynasty was established and the dynamic time history analysis was carried out. The seismic mechanism was revealed through the analysis of energy composition and variation. The influences of seismic parameters, brackets complexes, column head and vertical load on the energy dissipation of the timber frame were studied. The results show that under the earthquake, the kinetic energy, gravity potential energy and elastic strain energy are continuously transformed in the process of rocking of timber frame, and the seismic energy is dissipated through damping, friction and plastic deformation. Due to the energy storage advantages of the 'large roof', the kinetic energy of the input structure is stored in the frame by being converted into gravitational potential energy, which reduces the damage of the component and strives for time to consume seismic energy. The magnitude of vertical load and the amplitude of seismic wave acceleration have great influences on the energy of the timber frame: the greater the two parameters are, the greater the total input energy and damping energy dissipation of the timber frame are.
-
表 1 木构架组成构件尺寸
Table 1. Dimensions of components of the timber frame model
构件 B×H/mm L 数量 栱暗销 42×84 168 48 斗暗销 42×42 126 64 木柱 630(直径) 5040 4 栌斗 672×672 140 4 一层华栱 210×441 1302 4 泥道栱 210×315 1302 4 枋散斗 294×336 210 40 栱散斗 336×336 210 24 二层明乳栿 336×441 7724 2 阑额 210×441 4410 2 三层华栱 210×441 2625 4 四层素枋 210×441 8988 2 五层华栱 210×441 3024 4 六层华栱 210×315 2583 4 草乳栿 315×441 9072 2 一层柱头枋 210×315 10080 2 二层与四层柱头枋 210×315 10080 4 三层与五层柱头枋 210×315 10080 4 馒头榫 189×189 189 4 注:除柱以外,其它构件的B、H分别为构件横截面的宽和高;L为构件长度,其尺寸为外轮廓设计尺寸。 表 2 木材材料参数
Table 2. Property parameters of timber
参数 取值 参数 取值 参数 取值 E11 8900 E22 480 E33 233 ν12 0.0287 ν13 0.0313 ν23 0.606 G12 720 G13 351 G23 160 T1 93.56 T2 5.12 T3 5.12 C1 41.19 C2 5.12 C3 5.12 S12 8.0 S13 8.0 S23 2.0 注:E/MPa为弹性模量;G/MPa为剪切模量;ν为泊松比;T、C、S分别为抗拉、抗压、抗剪强度;1、2、3分别为顺纹方向、横纹径向和横纹弦向。 表 3 分析工况
Table 3. Analysis conditions
工况 模型 地震波 加速度幅值/g 基准 JZ(基准模型) Parkfield波 0.1 不同加速度幅值 0.2 0.3 0.4 不同地震波 Borrego Mtn波 0.1 San Fernando波 0.1 Borrego波 0.1 不同铺作层构造 A-1(仅截断眀乳栿) Parkfield波 0.1 A-2(仅截断素枋) 0.1 A-3(截断眀乳栿和素枋) 0.1 0.3 柱头馒头榫 B(无馒头榫) Parkfield波 0.1 0.3 不同竖向荷载 C-1(面荷载为10.5 kN/m2) Parkfield波 0.1 C-2(面荷载为14 kN/m2) 0.1 0.3 -
[1] 杨庆山. 古建筑木结构的承载及抗震机理[J]. 土木与环境工程学报(中英文), 2022, 44(2): 1 − 9. doi: 10.11835/j.issn.2096-6717.2021.063YANG Qingshan. Load-bearing and aseismic mechanism of traditional wooden structures [J]. Journal of Civil and Environmental Engineering, 2022, 44(2): 1 − 9. (in Chinese) doi: 10.11835/j.issn.2096-6717.2021.063 [2] 贺俊筱, 王娟, 杨庆山. 摇摆状态下古建筑木结构木柱受力性能分析及试验研究[J]. 工程力学, 2017, 34(11): 50 − 58. doi: 10.6052/j.issn.1000-4750.2016.07.0527HE Junxiao, WANG Juan, YANG Qingshan. Theoretical and experimental analysis on mechanical behavior of column in traditional timber structure during rocking [J]. Engineering Mechanics, 2017, 34(11): 50 − 58. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.07.0527 [3] GAO C, WANG J, YANG Q S, et al. Analysis of rocking behavior of tang-song timber frames under pulse-type excitations [J]. International Journal of Structural Stability and Dynamics, 2020, 20(1): 2050002. doi: 10.1142/S0219455420500029 [4] XIE Q F, ZHANG L P, LI S, et al. Cyclic behavior of Chinese ancient wooden frame with mortise–tenon joints: friction constitutive model and finite element modeling [J]. Journal of Wood Science, 2018, 64(1): 40 − 51. doi: 10.1007/s10086-017-1669-5 [5] XUE J Y, GUO R, QI L J, et al. Experimental study on the seismic performance of traditional timber mortise-tenon joints with different looseness under low-cyclic reversed loading [J]. Advances in Structural Engineeing, 2019, 22(6): 1312 − 1328. doi: 10.1177/1369433218814167 [6] CHUN Q, JIN H, DONG Y H, et al. Research on mechanical properties of dingtougong mortise-tenon joints of chinese traditional hall-style timber buildings built in the song and yuan dynasties [J]. International Journal of Architectural Heritage, 2019, 35: 235 − 250. [7] 周乾, 杨娜, 闫维明, 等. 故宫太和殿一层斗拱水平抗震性能试验[J]. 土木工程学报, 2016, 10: 18 − 31.ZHOU Qian, YANG Na, YAN Weiming, et al. Experimental study on seismic performance of tou-kungs of 1st eave of Taihe Palace in the Forbidden City [J]. China Civil Engineering Journal, 2016, 10: 18 − 31. (in Chinese) [8] 隋䶮, 赵鸿铁, 薛建阳, 等. 古建木构铺作层侧向刚度的试验研究[J]. 工程力学, 2010, 27(3): 74 − 78.SUI Yan, ZHAO Hongtie, XUE Jianyang, et al. Experimental study on lateral stiffness of Dougong layer in Chinese historic buildings [J]. Engineering Mechanics, 2010, 27(3): 74 − 78. (in Chinese) [9] 清华大学建筑设计研究院、北京清华城市规划设计研究院文化遗产保护研究所编著. 佛光寺东大殿建筑勘察研究报告[M]. 北京: 文物出版社, 2011.Architectural design and Research Institute of Tsinghua University. Research report on building investigation of the main hall of Fo-guang Temple [M]. Beijing: Cultural Relics Publishing House, 2011. (in Chinese) [10] 王娟, 崔志涵, 杨庆山, 等. 唐代殿堂型木构架柱架摇摆抗侧机理研究[J]. 工程力学, 2019, 36(10): 104 − 114. doi: 10.6052/j.issn.1000-4750.2018.09.0494WANG Juan, CUI Zhihan, YANG Qingshan, et al. A study on horizontal resistance mechanism of palace-style wooden frame in tang dynasty [J]. Engineering Mechanics, 2019, 36(10): 104 − 114. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0494 [11] 王娟, 崔志涵, 张熙铭. 唐代殿堂型木构架摇摆柱力学模型研究[J]. 工程力学, 2021, 38(3): 60 − 72. doi: 10.6052/j.issn.1000-4750.2020.04.0255WANG Juan, CUI Zhihan, ZHANG Ximing. The mechanical model of rocking columns in palace-style timber frame in tang dynasty [J]. Engineering Mechanics, 2021, 38(3): 60 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0255 [12] 崔志涵. 唐代殿堂型木构架柱架摇摆抗震机理研究[D]. 北京: 北京交通大学, 2019.CUI Zhihan. Study on the column rocking aseismic mechanism of the palace-style wooden frame in Tang-Dynasty [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese) [13] 缪志伟, 叶列平. 钢筋混凝土框架-联肢剪力墙结构的地震能量分布研究[J]. 工程力学, 2010, 27(2): 130 − 141.MIAO Zhiwei, YE Lieping. Study on distribution of cumulative hysteretic energy in reinforced concrete frame-coupled shear wall [J]. Engineering Mechanics, 2010, 27(2): 130 − 141. (in Chinese) [14] HOUSNER G W. Behavior of structures during earthquake [J]. Journal of the Engineering Mechanics Division, ASCE, 1959, 85(4): 109 − 129. doi: 10.1061/JMCEA3.0000102 [15] AKIYAMA H. Earthquake resistant limit state design for buildings [M]. Tokyo: University of Tokyo Press, 1985. [16] FAJFAR P, GASPERSIC P. The N2 method for the seismic damage analysis of RC buildings [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(1): 31 − 46. [17] UANG C M, BERTERO V V. Evaluation of seismic energy in structures [J]. Earthquake Engineering and Structural Dynamics, 1990, 19(1): 77 − 90. [18] 肖明葵, 刘波, 白绍良. 抗震结构总输入能量及其影响因素分析[J]. 重庆建筑大学学报, 1996, 18(2): 20 − 33.XIAO Mingkui, LIU Bo, BAI Shaoliang. Analysis of the total energy and its influencing factors for seismic structures [J]. Journal of Chonqing Jianzhu University, 1996, 18(2): 20 − 33. (in Chinese) [19] 叶列平, 程光煜, 曲哲, 等. 基于能量抗震设计方法研究及其在钢支撑框架结构中的应用[J]. 建筑结构学报, 2012, 33(11): 36 − 45.YE Lieping, CHENG Guangyu, QU Zhe, et al. Study on energy-based seismic design method and application on steel braced frame structures [J]. Journal of Building Structures, 2012, 33(11): 36 − 45. (in Chinese) [20] 徐佳琦, 吕西林. 基于能量的框架-摇摆墙结构与框架-剪力墙结构地震反应分析对比[J]. 建筑结构, 2013, 43(增刊 2): 418 − 422.XU Jiaqi, LYU Xilin. Energy based seismic response of frame-rocking-wall structure and frame-shear-wall structure [J]. Building Structure, 2013, 43(Suppl 2): 418 − 422. (in Chinese) [21] CHEN J Y, LI T Y, YANG Q S, et al. Degradation laws of hysteretic behaviour for historical timber buildings based on pseudo-static tests [J]. Engineering Structures, 2018, 156: 480 − 489. [22] MENG X J, YANG Q S, WEI J W, et al. Experimental investigation on the lateral structural performance of a traditional Chinese pre-Ming dynasty timber structure based on half-scale pseudo-static tests [J]. Engineering Structures, 2018, 167: 582 − 591. [23] 祁伟成. 五台佛光寺东大殿[M]. 北京: 文物出版社, 2012.QI Weicheng. The main hall of Wutai Fo-guang Temple [M]. Beijing: Cultural Relics Publishing House, 2012. (in Chinese) [24] 潘德华. 斗栱(上册)[M]. 南京: 东南大学出版社, 2004.PAN Dehua. Dou-Gong (I) [M]. Nanjing: Southeast University Publishing House, 2004. (in Chinese) [25] 陈金永. 宋式四柱带枓栱足尺木结构模型滞回性能试验研究与模拟分析[D]. 太原: 太原理工大学, 2017.CHEN Jinyong. Hysteretic behavior of full scale timber structure specimen with Dou-Gong sets and four columns in song dynasty by pseudo-static tests and simulation analysis [D]. Taiyuan: Taiyuan University of Technology, 2017. (in Chinese) [26] 袁双. 斗栱铺作层演变对古建筑木结构抗震性能的影响[D]. 成都: 西南交通大学, 2018.YUAN Shuang. Effects of evolution of tou-kung layer on the seismic performance of ancient timber structure [D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [27] 张锡成. 地震作用下木结构古建筑的动力分析[D]. 西安: 西安建筑科技大学, 2013.ZHANG Xicheng. Dynamic analysis of ancient timber-frame buildings under seismic excitations [D]. Xi’an: Xi’an University of Architecture and Technology, 2013. (in Chinese) [28] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报, 2000, 33(6): 33 − 37. doi: 10.3321/j.issn:1000-131X.2000.06.005YANG Pu, LI Yingmin, LAI Ming. A new method for selecting inputting waves for time-history analysis [J]. China Civil Engineering Journal, 2000, 33(6): 33 − 37. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.06.005 [29] 吴帅帅. 基于Abaqus的框架结构地震输入能量影响因素分析[D]. 郑州: 郑州大学, 2016.WU Shuaishuai. Analysis of influencing factors of input energy during earthquake of RC frame structure based on Abaqus [D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese) [30] 谢启芳, 薛建阳, 赵鸿铁. 汶川地震中古建筑的震害调查与启示[J]. 建筑结构学报, 2010, 31(2): 18 − 23.XIE Qifang, XUE Jianyang, ZHAO Hongtie. Seismic damage investigation and analysis of ancient buildings in Wenchuan earthquake [J]. Journal of Building Structures, 2010, 31(2): 18 − 23. (in Chinese) -