留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量分析的唐代殿堂型木构架抗震机理研究

王娟 许刃文 杨庆山 张熙铭 杨娜

王娟, 许刃文, 杨庆山, 张熙铭, 杨娜. 基于能量分析的唐代殿堂型木构架抗震机理研究[J]. 工程力学, 2022, 39(11): 73-88. doi: 10.6052/j.issn.1000-4750.2021.06.0456
引用本文: 王娟, 许刃文, 杨庆山, 张熙铭, 杨娜. 基于能量分析的唐代殿堂型木构架抗震机理研究[J]. 工程力学, 2022, 39(11): 73-88. doi: 10.6052/j.issn.1000-4750.2021.06.0456
WANG Juan, XU Ren-wen, YANG Qing-shan, ZHANG Xi-ming, YANG Na. ENERGY-BASED SEISMIC PERFORMANCE ANALYSIS OF PALACE-STYLE TIMBER FRAME OF TANG-DYNASTY[J]. Engineering Mechanics, 2022, 39(11): 73-88. doi: 10.6052/j.issn.1000-4750.2021.06.0456
Citation: WANG Juan, XU Ren-wen, YANG Qing-shan, ZHANG Xi-ming, YANG Na. ENERGY-BASED SEISMIC PERFORMANCE ANALYSIS OF PALACE-STYLE TIMBER FRAME OF TANG-DYNASTY[J]. Engineering Mechanics, 2022, 39(11): 73-88. doi: 10.6052/j.issn.1000-4750.2021.06.0456

基于能量分析的唐代殿堂型木构架抗震机理研究

doi: 10.6052/j.issn.1000-4750.2021.06.0456
基金项目: 国家自然科学基金项目(51978038);高等学校学科创新引智基地计划项目(B13002)
详细信息
    作者简介:

    许刃文 (1993−),男,湖北人,硕士生,从事古建筑木构架受力性能研究(E-mail: 18121142@bjtu.edu.cn)

    杨庆山 (1968−),男,河北人,教授,博士,博导,从事结构风工程、古建筑木结构受力性能研究(E-mail: qshyang@cqu.edu.cn)

    张熙铭 (1996−),男,河南人,硕士生,从事古建筑木结构构架受力性能理论模型研究(E-mail: 19121160@bjtu.edu.cn)

    杨 娜(1974−),女(满族),辽宁人,教授,博士,博导,从事古建筑力学性能、健康监测与状态评估研究(E-mail: nyang@bjtu.edu.cn)

    通讯作者:

    王 娟 (1982−),女,天津人,副教授,博士,博导,从事古建筑木结构受力性能与健康监测研究(E-mail: juanwang@bjtu.edu.cn)

  • 中图分类号: TU366.2

ENERGY-BASED SEISMIC PERFORMANCE ANALYSIS OF PALACE-STYLE TIMBER FRAME OF TANG-DYNASTY

  • 摘要: 唐代殿堂型木结构遗存在漫长历史进程中抵抗多次地震作用仍屹立不倒,表现出良好抗震性能。由于采用放松约束平摆浮搁柱脚节点及厚重大屋盖,水平地震作用下,木构架会发生反复摇摆抬升,存在能量转化问题,因此有必要通过构架中的能量分析进一步揭示其抗震机理。分析了地震作用下摇摆木构架中的能量平衡关系,建立了典型唐代殿堂型木构架精细化有限元模型并进行动力时程分析,通过木构架中的能量组成及变化规律分析揭示其抗震机理,同时研究了地震作用参数及斗拱-梁架一体化铺作层构造、柱头馒头榫弱连接节点形式、竖向荷载大小等结构参数对木构架中能量的影响。结果表明:地震作用下木构架摇摆变形过程中动能与重力势能及弹性应变能不断转化,并通过阻尼、摩擦及塑性变形耗散能量。由于“大屋盖”储能优势,输入的动能通过转化为重力势能存储于构架中,减轻构件损伤的同时也为其消耗地震能量争取了时间。影响参数分析结果表明:竖向荷载大小和地震波加速度幅值对木构架中能量影响较大,这两个参数值越大,木构架总输入能及阻尼耗能越大。
  • 图  1  木构架滞回曲线[13]

    Figure  1.  Hysteresis curve of timber frame[13]

    图  2  木构架摇摆抬升

    Figure  2.  Rocking and lifting of the timber frame

    图  3  木构架中能量转化示意图

    Figure  3.  Schematic diagram of energy conversion of timber frame

    图  4  木构架基准模型(模型JZ)

    Figure  4.  The model of the timber frame

    图  5  木构架主视图

    Figure  5.  Front view of the timber frame model

    图  6  木构架左视图

    Figure  6.  Lateral view of the timber frame model

    图  7  精细化有限元模型

    Figure  7.  Refinement finite element model

    图  8  有限元模型验证

    Figure  8.  Verification of the finite element model

    图  9  地震动加速度反应谱

    Figure  9.  Acceleration response spectra of ground motions

    图  10  分析工况模型

    Figure  10.  Models under analysis condition

    图  11  加速度为0.1 g时基准模型中的能量

    Figure  11.  The energy at 0.1 g acceleration amplitude of model JZ

    图  12  加速度为0.3 g时基准模型中的能量

    Figure  12.  The energy at 0.3 g acceleration amplitude of model JZ

    图  13  不同加速度幅值下基准模型中的能量

    Figure  13.  Energy in model JZ under different acceleration amplitudes

    图  14  不同地震波条件下基准模型中的能量对比

    Figure  14.  Energy comparison in model JZ under different seismic wave conditions

    图  15  不同地震波下各项能量对比

    Figure  15.  The energy comparison of different seismic waves

    图  16  不同铺作层构造模型中各项能量对比

    Figure  16.  The energy comparison of models with different brackets complexes

    图  17  不同铺作层构造模型中速度对比

    Figure  17.  The speed comparison of models with different brackets complexes

    图  18  不同铺作层构造模型中恢复力做功

    Figure  18.  The Energy by restoring force of models with different brackets complexes

    图  19  加速度幅值为0.3 g时不同铺作层构造模型中各项能量对比

    Figure  19.  The energy comparison of models with different brackets complexes when the acceleration is 0.3 g

    图  20  加速度幅值为0.1 g时不同柱头设置模型中各项能量对比

    Figure  20.  The energy comparison of models with different settings of column head when the acceleration is 0.1 g

    图  21  加速度幅值为0.3 g时不同柱头设置模型中各项能量对比

    Figure  21.  The energy comparison of models with different settings of column head when the acceleration is 0.3 g

    图  22  加速度幅值为0.1 g时不同竖向荷载作用模型的各项能量对比

    Figure  22.  Comparison of various energies of models under different vertical load when the acceleration is 0.1 g

    图  23  加速度幅值为0.1 g时不同竖向荷载作用模型的恢复力做功对比

    Figure  23.  The comparison of energy by restoring force of models under different vertical load when the acceleration is 0.1 g

    图  24  加速度幅值为0.3 g时不同竖向荷载模型中的各项能量对比

    Figure  24.  Comparison of various energies of models under different vertical load when the acceleration is 0.3 g

    表  1  木构架组成构件尺寸

    Table  1.   Dimensions of components of the timber frame model

    构件B×H/mmL数量
    栱暗销42×8416848
    斗暗销42×4212664
    木柱630(直径)50404
    栌斗672×6721404
    一层华栱210×44113024
    泥道栱210×31513024
    枋散斗294×33621040
    栱散斗336×33621024
    二层明乳栿336×44177242
    阑额210×44144102
    三层华栱210×44126254
    四层素枋210×44189882
    五层华栱210×44130244
    六层华栱210×31525834
    草乳栿315×44190722
    一层柱头枋210×315100802
    二层与四层柱头枋210×315100804
    三层与五层柱头枋210×315100804
    馒头榫189×1891894
    注:除柱以外,其它构件的BH分别为构件横截面的宽和高;L为构件长度,其尺寸为外轮廓设计尺寸。
    下载: 导出CSV

    表  2  木材材料参数

    Table  2.   Property parameters of timber

    参数取值参数取值参数取值
    E118900E22480E33233
    ν120.0287ν130.0313ν230.606
    G12720G13351G23160
    T193.56T25.12T35.12
    C141.19C25.12C35.12
    S128.0S138.0S232.0
    注:E/MPa为弹性模量;G/MPa为剪切模量;ν为泊松比;TCS分别为抗拉、抗压、抗剪强度;1、2、3分别为顺纹方向、横纹径向和横纹弦向。
    下载: 导出CSV

    表  3  分析工况

    Table  3.   Analysis conditions

    工况模型地震波加速度幅值/g
    基准JZ(基准模型)Parkfield波0.1
    不同加速度幅值0.2
    0.3
    0.4
    不同地震波Borrego Mtn波0.1
    San Fernando波0.1
    Borrego波0.1
    不同铺作层构造A-1(仅截断眀乳栿)Parkfield波 0.1
    A-2(仅截断素枋)0.1
    A-3(截断眀乳栿和素枋)0.1
    0.3
    柱头馒头榫B(无馒头榫)Parkfield波0.1
    0.3
    不同竖向荷载C-1(面荷载为10.5 kN/m2)Parkfield波0.1
    C-2(面荷载为14 kN/m2)0.1
    0.3
    下载: 导出CSV
  • [1] 杨庆山. 古建筑木结构的承载及抗震机理[J]. 土木与环境工程学报(中英文), 2022, 44(2): 1 − 9. doi: 10.11835/j.issn.2096-6717.2021.063

    YANG Qingshan. Load-bearing and aseismic mechanism of traditional wooden structures [J]. Journal of Civil and Environmental Engineering, 2022, 44(2): 1 − 9. (in Chinese) doi: 10.11835/j.issn.2096-6717.2021.063
    [2] 贺俊筱, 王娟, 杨庆山. 摇摆状态下古建筑木结构木柱受力性能分析及试验研究[J]. 工程力学, 2017, 34(11): 50 − 58. doi: 10.6052/j.issn.1000-4750.2016.07.0527

    HE Junxiao, WANG Juan, YANG Qingshan. Theoretical and experimental analysis on mechanical behavior of column in traditional timber structure during rocking [J]. Engineering Mechanics, 2017, 34(11): 50 − 58. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.07.0527
    [3] GAO C, WANG J, YANG Q S, et al. Analysis of rocking behavior of tang-song timber frames under pulse-type excitations [J]. International Journal of Structural Stability and Dynamics, 2020, 20(1): 2050002. doi: 10.1142/S0219455420500029
    [4] XIE Q F, ZHANG L P, LI S, et al. Cyclic behavior of Chinese ancient wooden frame with mortise–tenon joints: friction constitutive model and finite element modeling [J]. Journal of Wood Science, 2018, 64(1): 40 − 51. doi: 10.1007/s10086-017-1669-5
    [5] XUE J Y, GUO R, QI L J, et al. Experimental study on the seismic performance of traditional timber mortise-tenon joints with different looseness under low-cyclic reversed loading [J]. Advances in Structural Engineeing, 2019, 22(6): 1312 − 1328. doi: 10.1177/1369433218814167
    [6] CHUN Q, JIN H, DONG Y H, et al. Research on mechanical properties of dingtougong mortise-tenon joints of chinese traditional hall-style timber buildings built in the song and yuan dynasties [J]. International Journal of Architectural Heritage, 2019, 35: 235 − 250.
    [7] 周乾, 杨娜, 闫维明, 等. 故宫太和殿一层斗拱水平抗震性能试验[J]. 土木工程学报, 2016, 10: 18 − 31.

    ZHOU Qian, YANG Na, YAN Weiming, et al. Experimental study on seismic performance of tou-kungs of 1st eave of Taihe Palace in the Forbidden City [J]. China Civil Engineering Journal, 2016, 10: 18 − 31. (in Chinese)
    [8] 隋䶮, 赵鸿铁, 薛建阳, 等. 古建木构铺作层侧向刚度的试验研究[J]. 工程力学, 2010, 27(3): 74 − 78.

    SUI Yan, ZHAO Hongtie, XUE Jianyang, et al. Experimental study on lateral stiffness of Dougong layer in Chinese historic buildings [J]. Engineering Mechanics, 2010, 27(3): 74 − 78. (in Chinese)
    [9] 清华大学建筑设计研究院、北京清华城市规划设计研究院文化遗产保护研究所编著. 佛光寺东大殿建筑勘察研究报告[M]. 北京: 文物出版社, 2011.

    Architectural design and Research Institute of Tsinghua University. Research report on building investigation of the main hall of Fo-guang Temple [M]. Beijing: Cultural Relics Publishing House, 2011. (in Chinese)
    [10] 王娟, 崔志涵, 杨庆山, 等. 唐代殿堂型木构架柱架摇摆抗侧机理研究[J]. 工程力学, 2019, 36(10): 104 − 114. doi: 10.6052/j.issn.1000-4750.2018.09.0494

    WANG Juan, CUI Zhihan, YANG Qingshan, et al. A study on horizontal resistance mechanism of palace-style wooden frame in tang dynasty [J]. Engineering Mechanics, 2019, 36(10): 104 − 114. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0494
    [11] 王娟, 崔志涵, 张熙铭. 唐代殿堂型木构架摇摆柱力学模型研究[J]. 工程力学, 2021, 38(3): 60 − 72. doi: 10.6052/j.issn.1000-4750.2020.04.0255

    WANG Juan, CUI Zhihan, ZHANG Ximing. The mechanical model of rocking columns in palace-style timber frame in tang dynasty [J]. Engineering Mechanics, 2021, 38(3): 60 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0255
    [12] 崔志涵. 唐代殿堂型木构架柱架摇摆抗震机理研究[D]. 北京: 北京交通大学, 2019.

    CUI Zhihan. Study on the column rocking aseismic mechanism of the palace-style wooden frame in Tang-Dynasty [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [13] 缪志伟, 叶列平. 钢筋混凝土框架-联肢剪力墙结构的地震能量分布研究[J]. 工程力学, 2010, 27(2): 130 − 141.

    MIAO Zhiwei, YE Lieping. Study on distribution of cumulative hysteretic energy in reinforced concrete frame-coupled shear wall [J]. Engineering Mechanics, 2010, 27(2): 130 − 141. (in Chinese)
    [14] HOUSNER G W. Behavior of structures during earthquake [J]. Journal of the Engineering Mechanics Division, ASCE, 1959, 85(4): 109 − 129. doi: 10.1061/JMCEA3.0000102
    [15] AKIYAMA H. Earthquake resistant limit state design for buildings [M]. Tokyo: University of Tokyo Press, 1985.
    [16] FAJFAR P, GASPERSIC P. The N2 method for the seismic damage analysis of RC buildings [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(1): 31 − 46.
    [17] UANG C M, BERTERO V V. Evaluation of seismic energy in structures [J]. Earthquake Engineering and Structural Dynamics, 1990, 19(1): 77 − 90.
    [18] 肖明葵, 刘波, 白绍良. 抗震结构总输入能量及其影响因素分析[J]. 重庆建筑大学学报, 1996, 18(2): 20 − 33.

    XIAO Mingkui, LIU Bo, BAI Shaoliang. Analysis of the total energy and its influencing factors for seismic structures [J]. Journal of Chonqing Jianzhu University, 1996, 18(2): 20 − 33. (in Chinese)
    [19] 叶列平, 程光煜, 曲哲, 等. 基于能量抗震设计方法研究及其在钢支撑框架结构中的应用[J]. 建筑结构学报, 2012, 33(11): 36 − 45.

    YE Lieping, CHENG Guangyu, QU Zhe, et al. Study on energy-based seismic design method and application on steel braced frame structures [J]. Journal of Building Structures, 2012, 33(11): 36 − 45. (in Chinese)
    [20] 徐佳琦, 吕西林. 基于能量的框架-摇摆墙结构与框架-剪力墙结构地震反应分析对比[J]. 建筑结构, 2013, 43(增刊 2): 418 − 422.

    XU Jiaqi, LYU Xilin. Energy based seismic response of frame-rocking-wall structure and frame-shear-wall structure [J]. Building Structure, 2013, 43(Suppl 2): 418 − 422. (in Chinese)
    [21] CHEN J Y, LI T Y, YANG Q S, et al. Degradation laws of hysteretic behaviour for historical timber buildings based on pseudo-static tests [J]. Engineering Structures, 2018, 156: 480 − 489.
    [22] MENG X J, YANG Q S, WEI J W, et al. Experimental investigation on the lateral structural performance of a traditional Chinese pre-Ming dynasty timber structure based on half-scale pseudo-static tests [J]. Engineering Structures, 2018, 167: 582 − 591.
    [23] 祁伟成. 五台佛光寺东大殿[M]. 北京: 文物出版社, 2012.

    QI Weicheng. The main hall of Wutai Fo-guang Temple [M]. Beijing: Cultural Relics Publishing House, 2012. (in Chinese)
    [24] 潘德华. 斗栱(上册)[M]. 南京: 东南大学出版社, 2004.

    PAN Dehua. Dou-Gong (I) [M]. Nanjing: Southeast University Publishing House, 2004. (in Chinese)
    [25] 陈金永. 宋式四柱带枓栱足尺木结构模型滞回性能试验研究与模拟分析[D]. 太原: 太原理工大学, 2017.

    CHEN Jinyong. Hysteretic behavior of full scale timber structure specimen with Dou-Gong sets and four columns in song dynasty by pseudo-static tests and simulation analysis [D]. Taiyuan: Taiyuan University of Technology, 2017. (in Chinese)
    [26] 袁双. 斗栱铺作层演变对古建筑木结构抗震性能的影响[D]. 成都: 西南交通大学, 2018.

    YUAN Shuang. Effects of evolution of tou-kung layer on the seismic performance of ancient timber structure [D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [27] 张锡成. 地震作用下木结构古建筑的动力分析[D]. 西安: 西安建筑科技大学, 2013.

    ZHANG Xicheng. Dynamic analysis of ancient timber-frame buildings under seismic excitations [D]. Xi’an: Xi’an University of Architecture and Technology, 2013. (in Chinese)
    [28] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报, 2000, 33(6): 33 − 37. doi: 10.3321/j.issn:1000-131X.2000.06.005

    YANG Pu, LI Yingmin, LAI Ming. A new method for selecting inputting waves for time-history analysis [J]. China Civil Engineering Journal, 2000, 33(6): 33 − 37. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.06.005
    [29] 吴帅帅. 基于Abaqus的框架结构地震输入能量影响因素分析[D]. 郑州: 郑州大学, 2016.

    WU Shuaishuai. Analysis of influencing factors of input energy during earthquake of RC frame structure based on Abaqus [D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese)
    [30] 谢启芳, 薛建阳, 赵鸿铁. 汶川地震中古建筑的震害调查与启示[J]. 建筑结构学报, 2010, 31(2): 18 − 23.

    XIE Qifang, XUE Jianyang, ZHAO Hongtie. Seismic damage investigation and analysis of ancient buildings in Wenchuan earthquake [J]. Journal of Building Structures, 2010, 31(2): 18 − 23. (in Chinese)
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  83
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 录用日期:  2021-11-18
  • 修回日期:  2021-11-08
  • 网络出版日期:  2021-11-18
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回