DYNAMIC RESPONSE ANALYSIS OF OFFSHORE WIND TURBINE CONSIDERING ROTOR-NACELLE ASSEMBLY (RNA) OPERATION
-
摘要: 在风、浪的长期耦合作用下,海上风电结构的振动问题不仅会影响发电机组的电能输出,还会加剧结构的累积疲劳损伤,危害结构安全。为更加科学、合理地认识近海风电结构的动力特性,该文通过考虑风轮-机舱组件(rotor-nacelle assembly, RNA)运行作用及风、浪相关性,采用Von Karman风谱模型模拟湍流风场并计算气动荷载,通过莫里森方程求取单桩基础结构的波浪荷载,对NREL 5MW单桩风电塔进行动力响应分析,对比其在不同状态下的动态行为模式;通过批处理程序,开展对近海风电结构在3 m/s~30 m/s风速范围内的响应计算,探究RNA运行作用下近海风电结构位移、加速度响应随风速的变化规律。结果表明:近海风电结构在不同工作状态下的动力响应具有不同的频谱特征,其位移、加速度峰值响应会被RNA运行作用放大。Abstract: Caused by the long-term coupling effect of wind and wave, the vibration of offshore wind turbine will affect the power output of the generator unit, aggravate the cumulative fatigue damage of the structure and reduce the safety of the structure. In order to understand the dynamic characteristics of offshore wind turbine more scientifically, this paper uses von Karman wind spectrum model to simulate the turbulent wind field and calculate the aerodynamic load by considering the Rotor–Nacelle Assembly (RNA) operation and the correlation between wind and wave, and calculates the wave load at monopile foundation structure by Morrison equation. The dynamic response of NREL 5MW monopile wind turbine is analyzed, and the dynamic behavior patterns under different states are compared. Through batch processing program, the response of offshore wind turbine with the wind speed range of 3 m/s~30 m/s is calculated, and the variation laws of displacement and acceleration response of offshore wind turbine with wind speed under RNA operation are explored. The results show that the dynamic response of offshore wind turbine under different working conditions has different spectrum characteristics, and the peak response of displacement and acceleration will be amplified by RNA operation.
-
Key words:
- offshore wind turbine /
- RNA operation effect /
- wind-wave correlation /
- aerodynamic load /
- wave load /
- dynamic response
-
表 1 NREL 5MW单桩风电塔参数
Table 1. Parameters of NREL 5MW monopile
参数 取值 参数 取值 额定功率 5 MW 塔顶截面直径 3.87 m 塔筒高度 87.6 m 塔底截面直径 6 m 风轮直径 126 m 叶片长度 61.5 m 轮毂高度 90 m 轮毂直径 3 m 塔筒质量 347 600 kg 塔筒壁厚 19 mm~27 mm 风轮质量 110 000 kg 单桩高度 20 m 机舱质量 240 000 kg 单桩直径 6 m 切入风速 3 m/s 单桩壁厚 27 mm 额定风速 11.4 m/s 切入转速 6.9 r/min 切出风速 25 m/s 额定转速 12.1 r/min 表 2 NREL 5MW单桩风电塔特征频率
Table 2. Characteristic frequency of NREL 5MW monopile wind turbine
特征项 频率/Hz 塔架侧向一阶 0.275 塔架前后向一阶 0.278 叶轮3P,7 m/s 0.435 叶轮3P,11.4 m/s 0.606 表 3 工况条件
Table 3. Case condition
工况 平均风速/(m/s) 有义波高/m 谱峰周期/s 状态 1 7 0.81 6.14 切入 2 18 2.42 7.32 额定 3 28 5.33 8.30 停机 表 4 对比模型
Table 4. Comparison model
模型 桨距角 转速 电机 M1 变桨 变速 运行 M2 风速相关 0 停机 M3 0 0 停机 -
[1] 吕文春, 马剑龙, 陈金霞, 等. 风电产业发展现状及制约瓶颈[J]. 可再生能源, 2018, 36(8): 1214 − 1218. doi: 10.3969/j.issn.1671-5292.2018.08.019LYU Wenchun, MA Jianlong, CHEN Jinxia, et al. Current situation and restriction bottleneck of development of wind power industry [J]. Renewable Energy Resources, 2018, 36(8): 1214 − 1218. (in Chinese) doi: 10.3969/j.issn.1671-5292.2018.08.019 [2] 许斌, 韩继龙. 预应力装配式风机叶片连接段结构模拟分析[J]. 工程力学, 2016, 33(2): 209 − 215. doi: 10.6052/j.issn.1000-4750.2014.06.0548XU Bin, HAN Jilong. Numerical simulation on a joint segment of a prestressed prefabricated sectional wind turbine blade model [J]. Engineering Mechanics, 2016, 33(2): 209 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.06.0548 [3] 黄维平, 刘建军, 赵战华. 海上风电基础结构研究现状及发展趋势[J]. 海洋工程, 2009, 27(2): 130 − 134. doi: 10.3969/j.issn.1005-9865.2009.02.021HUANG Weiping, LIU Jianjun, ZHAO Zhanhua. The state of the art of study on offshore wind turbine structures and its development [J]. The Ocean Engineering, 2009, 27(2): 130 − 134. (in Chinese) doi: 10.3969/j.issn.1005-9865.2009.02.021 [4] XI R Q, DU X L, WANG P G, et al. Dynamic analysis of 10 MW monopile supported offshore wind turbine based on fully coupled model [J]. Ocean Engineering, 2021, 234(15): 1 − 21. [5] KO Y Y. A simplified structural model for monopile-supported offshore wind turbines with tapered towers [J]. Renewable Energy, 2020, 156: 777 − 790. doi: 10.1016/j.renene.2020.03.149 [6] 陈小波, 李静, 陈健云. 海上风电机组随机风浪荷载时程数值计算[J]. 太阳能学报, 2011, 32(3): 288 − 295.CHEN Xiaobo, LI Jing, CHEN Jianyun. Numerical calculation of random wind and wave loads time history of offshore wind turbine [J]. ACTA Energiae Solaris Sinica, 2011, 32(3): 288 − 295. (in Chinese) [7] 李德源, 刘胜祥, 张湘伟. 海上风力机塔架在风波联合作用下的动力响应数值分析[J]. 机械工程学报, 2009, 45(12): 46 − 52. doi: 10.3901/JME.2009.12.046LI Deyuan, LIU Shengxiang, ZHANG Xiangwei. Dynamical response numerical analysis of the offshore wind turbine tower under combined action of wind and wave [J]. Journal of Mechanical Engineering, 2009, 45(12): 46 − 52. (in Chinese) doi: 10.3901/JME.2009.12.046 [8] 李凯文, 宋波, 黄帅. 考虑流固耦合效应的海上单桩式风电塔动力响应研究[J]. 建筑结构学报, 2014, 35(4): 318 − 324.LI Kaiwen, SONG Bo, HUANG Shuai. Dynamic response analysis of offshore wind tower founded on monopile considering FSI [J]. Journal of Building Structures, 2014, 35(4): 318 − 324. (in Chinese) [9] 彭文春, 邓宗伟, 高乾丰, 等. 风机塔筒流固耦合分析与受力监测研究[J]. 工程力学, 2015, 32(7): 136 − 142. doi: 10.6052/j.issn.1000-4750.2013.12.1229PENG Wenchun, DENG Zongwei, GAO Qianfeng, et al. Fluid-solid interaction analysis and stress monitoring research of wind turbine tower [J]. Engineering Mechanics, 2015, 32(7): 136 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.12.1229 [10] SØRUM S H, HORN J T H, AMDAHL J. Comparison of numerical response predictions for a bottom - fixed offshore wind turbine [J]. Energy Procedia, 2017, 137: 89 − 99. doi: 10.1016/j.egypro.2017.10.336 [11] MORATO A, SRIRAMULA S, KRISHNAN N, et al. Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation [J]. Renewable Energy, 2017, 101(4): 126 − 143. [12] 王文华. 地震作用下固定式海上风机耦合反应分析及振动控制研究 [D]. 大连: 大连理工大学, 2018.WANG Wenhua. Fully coupled analysis and vibration control of bottom fixed offshore wind turbine under Earthquakes [D]. Dalian: Dalian University of Technology, 2018. (in Chinese) [13] HU Y, YANG J, BANIOTOPOULOS C, et al. Dynamic analysis of offshore steel wind turbine towers subjected to wind, wave and current loading during construction [J]. Ocean Engineering, 2020, 216: 108084. doi: 10.1016/j.oceaneng.2020.108084 [14] 刘皓明, 赵敏, 田炜, 等. 风、浪对海上风电机组振动特性的影响及控制策略[J]. 电力自动化设备, 2020, 40(1): 46 − 51, 58.LIU Haoming, ZHAO Min, TIAN Wei, et al. Effect of wind and wave on vibration characteristics of offshore wind turbines and control strategy [J]. Electric Power Automation Equipment, 2020, 40(1): 46 − 51, 58. (in Chinese) [15] 贺广零, 周勇, 李杰. 风力发电高塔系统地震动力响应分析[J]. 工程力学, 2009, 26(7): 72 − 77. doi: 10.6052/j.issn.1000-4750.2007.12.0734HE Guangling, ZHOU Yong, LI Jie. Seismic analysis of wind turbine system [J]. Engineering Mechanics, 2009, 26(7): 72 − 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2007.12.0734 [16] 金鑫, 王磊, 刘桦. 大功率风力发电机地震动力学建模及载荷计算[J]. 工程力学, 2012, 29(5): 224 − 229.JIN Xin, WANG Lei, LIU Hua. A large scale wind turbine dynamic model and its load Calculation in earthquake [J]. Engineering Mechanics, 2012, 29(5): 224 − 229. (in Chinese) [17] 赵志, 戴靠山, 毛振西, 等. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(增刊 1): 293 − 299. doi: 10.6052/j.issn.1000-4750.2017.06.S056ZHAO Zhi, DAI Kaoshan, MAO Zhenxi, et al. Failure analyses of a wind turbine tower under ground motions with different frequency characteristics [J]. Engineering Mechanics, 2018, 35(Suppl 1): 293 − 299. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S056 [18] 梅竹, 胡皓, 戴靠山, 等. 长周期地震动-脉动风耦合作用下风电塔架动力响应分析与混合试验初步验证[J]. 工程力学, 2021, 38(增刊 1): 58 − 65. doi: 10.6052/j.issn.1000-4750.2020.06.S011MEI Zhu, HU Hao, DAI Kaoshan, et al. Dynamic response analysis and preliminary verification of hybrid test of wind power tower under the coupling of long period ground motion and fluctuating wind. [J]. Engineering Mechanics, 2021, 38(Suppl 1): 58 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.S011 [19] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development [R] Colorado: National Renewable Energy Laboratory, 2009: 1 − 75 [20] JONKMAN J, BUHL M L. Fast user’s guide Technical Report [R] Colorado: National Renewable Energy Laboratory, 2005: 1 − 125. [21] JONKMAN J M. Modeling of the UAE Wind Turbine for Refinement of Fast AD [R] Colorado: National Renewable Energy Laboratory, 2003: 1 − 177. [22] GHASSEMPOUR M, FAILLA G, ARENA F. Vibration mitigation in offshore wind turbines via tuned mass damper [J]. Engineering Structures, 2019, 183(MAR.15): 610 − 636. [23] 欧进萍, 肖仪清, 段忠东, 等. 基于风浪联合概率模型的海洋平台结构系统可靠度分析[J]. 海洋工程, 2003(4): 1 − 7. doi: 10.3969/j.issn.1005-9865.2003.04.001OU Jinping, XIAO Yiqing, DUAN Zhongdong, et al. Structural system reliability analysis for offshore platforms based on the joint probabilistic model of wind and wave [J]. The Ocean Engineering, 2003(4): 1 − 7. (in Chinese) doi: 10.3969/j.issn.1005-9865.2003.04.001 [24] IEC 61400−1, Wind turbines part 1: Design requirements [S]. Geneva, Switzerland: International Electrotechnical Commission, 2014. [25] JONKMAN B J. Turbsim user's guide [R]. Colorado: National Renewable Energy Laboratory (NREL) Report, 2016: 1 − 93. [26] HANSEN M O L. 风力机空气动力学 [M]. 北京: 中国电力出版社, 2009.
HANSEN M O L. Aerodynamics of wind turbines [M]. Beijing: China Electric Power Press, 2009. (in Chinese)[27] 徐啸, 陶爱峰, 李雪丁, 等. 基于实测数据的台湾海峡中部波浪特征分析[J]. 热带海洋学报, 2021, 40(1): 12 − 20.XU Xiao, TAO Aifeng, LI Xueding, et al. Analysis of wave characteristics in the central taiwan strait based on measured data [J]. Journal of Tropical Oceanography, 2021, 40(1): 12 − 20. (in Chinese) [28] DNV-OS-J101, Design of offshore wind turbine structures [S]. Oslo: Det Norske Veritas, 2013. [29] 中国船级社. 海上风力发电机组认证规范 [S]. 2012.China Classification Society. Code for certification of offshore wind turbines [S]. 2012. (in Chinese) [30] 刘雄, 李钢强, 陈严, 等. 水平轴风力机叶片动态响应分析[J]. 机械工程学报, 2010, 46(12): 128 − 134, 141. doi: 10.3901/JME.2010.12.128LIU Xiong, LI Gangqiang, CHEN Yan, et al. Dynamic response analysis of the blade of horizontal axis wind turbines [J]. Journal of Mechanical Engineering, 2010, 46(12): 128 − 134, 141. (in Chinese) doi: 10.3901/JME.2010.12.128 [31] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风机地震响应的影响[J]. 工程力学, 2020, 37(11): 58 − 68. doi: 10.6052/j.issn.1000-4750.2019.12.0715XI Renqiang, XU Chengshun, DU Xiuli, et al. Effects of wind-wave loadings on the seismic response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58 − 68. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0715 -