STATE-OF-THE-ART REVIEW ON STRUCTURAL SEISMIC MONITORING AND ASSESSMENT OF BUILDING STRUCTURES
-
摘要: 结构强震观测系统是揭示工程系统抗震行为、评估结构灾后安全性能的一项重要技术,在世界范围内得到了广泛的发展与应用。介绍该观测系统的组成及历史发展,统计国内外典型建筑结构强震观测实例,并分析现有结构强震观测系统的局限性。阐述了强震观测到安全评估的内在逻辑,在此基础上,对Van Nuys酒店长期服役状态与性能评估中的数据挖掘方法进行了综述,并深入分析了当前数据研究与评估方法存在的问题。结合现有国内外研究现状与发展趋势,对未来工程结构强震观测数据的分析挖掘与安全评估进行了展望。Abstract: Seismic monitoring of structures has been an important technology for investigating the real-world behaviors of structures and for assessing the seismic performance of structures. The fundamental components and historical development of monitoring systems are firstly introduced. Through illustrating case studies of seismic monitoring of structures around the world, the practical limitations of existing systems are discussed followingly. The relationship between seismic structural monitoring and safety assessment is revealed. The data mining technology and performance assessment methods during the long-term monitoring life of Van Nuys Hotel are summarized with key issues highlighted. The future development of monitoring, of analysis and of assessment for the engineering structures is finally presented.
-
Key words:
- seismic monitoring /
- seismic structure /
- review /
- system identification /
- seismic performance
-
表 1 国内外建筑结构强震观测实例
Table 1. Case study of strong seismic monitoring of structure in the world
国家 建筑物 结构楼层数 监测数据类型 监测通道数 监测楼层数 丰富度指标 中国 上海环球金融中心[13] 101 加速度/速度 99/27 15 0.15 中国 台北101大厦[14] 101 加速度 30 7 0.07 中国 深圳地王大厦[15] 81 加速度 18 6 0.07 中国 福建防震减灾中心[16] 11 加速度 27 7 0.64 中国 北京人大办公楼[17] 10 加速度 9 3 0.30 中国 台湾中兴大学土木系建筑[18] 7 加速度 27 4 0.57 中国 台湾明立小学[19] 4 加速度 30 4 1.00 美国 Los Angeles Office/Residential Building[20] 73 加速度 36 11 0.15 美国 Salesforce Tower[4] 64 加速度 32 10 0.16 美国 Los Angeles Office Building[21-22] 54 加速度 20 6 0.11 美国 Pacific Park Plaza[23] 30 加速度 24 4 0.13 美国 Green Building at MIT campus[5] 21 加速度 36 11 0.52 美国 An Office Tower in Los Angeles [24] 18 加速度 9 3 0.17 美国 The UCLA Doris and Louis Factor building [25-26] 17 加速度 72 17 1.00 美国 Government Steel Frame Office Building[27] 15 加速度 15 4 0.27 美国 Hollywood Storage Building[28] 14 加速度 15 5 0.36 美国 Sherman Oaks Commercial Building [29] 13 加速度 15 5 0.38 美国 Walnut Creek Residential Building[30] 10 加速度 16 4 0.40 美国 Millikan Library[31-33] 9 加速度 36 9 1.00 美国 Van Nuys Hotel[34] 7 加速度 16 5 0.71 美国 Imperial County Services Building[35] 6 加速度 13 4 0.67 日本 Office Building in Tokyo with Oil Dampers[36] 54 加速度 9 3 0.06 日本 SRC Building in Tokyo[36] 14 加速度 10 5 0.36 日本 RC Office Building in Tokyo[36] 12 加速度 9 3 0.25 日本 RC Office Building [36] 9 加速度 9 3 0.33 日本 RC Structure[36] 7 加速度 12 3 0.43 日本 SIT Building in Tokyo-Bay[37] 14 加速度/位移 63/4 5 0.36 欧洲 Garfagnana Hospital[38] 4 加速度 16 4 1.00 印度 Building in Guwahati, Assam[39] 8 加速度 19 6 0.75 表 2 2011年东日本大地震后结构强震观测及性能评估成果综述
Table 2. Review of seismic monitoring and results of performance assessment during the Tohoku earthquake
房子 监测数据类型 评估结果 宫城县9层隔震办公楼[36] 加速度 整体结构周期延长,上层结构保持弹性 神奈川县7层隔震教学楼[36] 加速度 整体结构动力特性保持稳定 东京12层隔震办公楼[36] 加速度 整体结构周期延长、阻尼比大幅上升,上层结构保持弹性 宫城县21层高级通讯塔[36] 加速度 前三阶模态叠加分析结果与监测响应记录几乎一致 东京14层设阻尼器建筑[36] 加速度 前三阶模态叠加分析结果与监测响应记录几乎一致 东京54层设阻尼器建筑[36] 加速度 附加阻尼系统一定程度上能减小结构响应峰值 东京24层AMD钢框架大楼[42] 加速度、阻尼器行程 结构固有频率保持不变,阻尼比上升 大阪湾区55层钢框架结构[43] 加速度 弯剪模型相较于剪切模型,更准确的反映原模型高阶自振周期 东京Kogakuin Building[44] 加速度 结构基频永久下降,阻尼比水平较低 东京STEC Building[44] 加速度 结构基频永久下降,阻尼比水平较低 Kosha Tower[45] 加速度 结构存在永久损伤,基频下降 东京湾SIT建筑[37] 加速度、位移 激励频率与结构扭转频率相当,上部结构响应剧烈,隔震层刚度退化 台北101大厦[3] 加速度 激励频率远低于结构自振频率,结构响应较小 东京都市大学9号楼[46] 加速度 结构局部损伤,基频降低 表 3 Van Nuys 酒店结构地震观测时间及基本信息
Table 3. Seismic events and basic information for Van Nuys
年份/年 地震事件 PGA/g 结构峰值加速度/g 加速度放大系数 1987 Whittier 0.170 0.200 1.18 1991 Sierra Madre 0.070 0.100 1.43 1992 Landers 0.040 0.190 4.75 1992 Big Bear 0.030 0.060 2.00 1994 Northridge 0.470 0.590 1.26 2008 Chino Hills 0.054 0.140 2.59 2010 Borrego Springs 0.004 0.016 4.00 2011 Newhall 0.006 0.016 2.67 2014 Encino 0.144 0.219 1.52 2014 Westwood Village 0.010 0.012 1.20 表 4 Van Nuys 酒店50年性能评估汇总
Table 4. Summary of performance assessments of Van Nuys hotel during last 50 years
成果发表年份/年 评估地震事件 评估指标 1996 Whittie, Landers, Big Bear, Northridge 基频、传递函数、阻尼比[47] 1996 Northridge 层间位移角、顶层位移、楼层剪力 [57] 1997 Northridge 楼层位移[58] 2001 Northridge 层间剪力、楼层位移[59] 2001 Landers, Big Bear, Northridge 最大位移、屈服位移、延性供需比[60] 2003 Whittier, Landers, Big Bear, Northridge 层间位移角、平均位移角、楼层最大位移[61] 2004 Northridge 峰值位移角、Park-Ang指标(位移分量)[62] 2006 Landers, Big Bear, Northridge 层间位移角、楼层响应峰值、楼层反应谱、层间剪力[63] 2006 Northridge 刚度比、阻尼比、层间位移角[64] 2007 Northridge 频率、瞬时均值频率[65] 2007 Landers, Big Bear, Northridge 一阶振型、模态频率[66] 2008 Northridge 瞬时均值频率[67] 2010 Landers, Big Bear, Northridge 向量自回归移动均值系数[51] 2010 Northridge 模态、一层侧向刚度[68] 2012 Northridge 平均剪切波速、归一化峰值应变[69] 2013 Lander, Northridge 能量耗散率[34] 2016 Northridge 频率[49] 2019 Big Bear, Northridge 频率、阻尼比、弹性谱加速度、功率谱[50] 2020 Big Bear, Northridge 楼层位移、最大层间位移角、耗散能量[70] -
[1] 梁厚朗, 申源, 毛利, 等. 芦山Ms7.0与九寨沟Ms7.0地震灾区房屋震害特征对比研究[J]. 华南地震, 2019, 39(3): 14 − 22.LIANG Houlang, SHEN Yuan, MAO Li, et al. Comparison of building damage characteristics of the Lushan MS7.0 and Jiuzhaigou MS7.0 earthquakes [J]. South China Journal of Seismology, 2019, 39(3): 14 − 22. (in Chinese) [2] 尹保江, 黄世敏, 薛彦涛, 等. 汶川5.12地震框架-剪力墙结构震害调查与反思[J]. 工程抗震与加固改造, 2008, 30(4): 37 − 40. doi: 10.3969/j.issn.1002-8412.2008.04.006YIN Baojiang, HUANG Shimin, XUE Yantao, et al. Seismic damage investigation and thinking on the damage buildings of frame-shear wall structure in Wenchuan 5.12 Earthquake [J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(4): 37 − 40. (in Chinese) doi: 10.3969/j.issn.1002-8412.2008.04.006 [3] CHEN K C, WANG J H, HUANG B S, et al. Vibrations of the TAIPEI 101 skyscraper caused by the 2011 Tohoku earthquake, Japan [J]. Earth, Planets and Space, 2013, 64(12): 1277 − 1286. [4] ÇELEBI M, HADDADI H, HUANG M, et al. The behavior of the salesforce tower, the tallest building in San Francisco, California inferred from earthquake and ambient shaking [J]. Earthquake Spectra, 2019, 35(4): 1711 − 1737. doi: 10.1193/112918EQS273M [5] SUN H, BÜYÜKÖZTÜRK O. The MIT Green Building benchmark problem for structural health monitoring of tall buildings [J]. Structural Control and Health Monitoring, 2018, 25(3): e2115. doi: 10.1002/stc.2115 [6] 廖凯怡. 汶川援建隔震结构强震观测与地震反应分析[D]. 广州: 广州大学, 2019.LIAO Kaiyi. Strong seismic motion observation and seismic response analysis of aid-Wenchuan isolated structures [D]. Guangzhou: Guangzhou University, 2019. (in Chinese) [7] TRIFUNAC M. Recording strong earthquake motion—instruments, recording strategies and data processing [R]. California: University of Southern California, 2007. [8] ÇELEBI M. Seismic instrumentation of buildings [M]. California: U.S. Department of the Interior: U.S. Geological Survey, 2000. [9] KRAWINKLER H. Van Nuys hotel building testbed report: exercising seismic performance assessment [R]. California: University of California at Berkeley, 2005. [10] 周雍年, 章文波. 防灾楼结构遥测台阵[C]// 全国地震工程学会会议. 南京: 中国地震学会, 2002: 755 − 758.ZHOU Yongnian, ZHANG Wenbo. Disaster prevention structure telemetry array [C]// Earthquake Engineering Society of China. Nanjing: Institute of Engineering Mechanics, China Earthquake Administration, 2002: 755 − 758. (in Chinese) [11] SKOLNIK D A, WALLACE J W. Critical assessment of interstory drift measurements [J]. Journal of Structural Engineering, 2010, 136(12): 1574 − 1584. doi: 10.1061/(ASCE)ST.1943-541X.0000255 [12] SIMKIN G, BESKHYROUN S, MA Q, et al. Measured response of instrumented buildings during the 2013 Cook Strait Earthquake Sequence [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48(4): 223 − 234. doi: 10.5459/bnzsee.48.4.223-234 [13] 赵鹏, 胡峻, 徐永林, 等. 上海市环球金融中心结构地震反应台阵[J]. 地震地磁观测与研究, 2018, 39(6): 143 − 149. doi: 10.3969/j.issn.1003-3246.2018.06.021ZHAO Peng, HU Jun, XU Yonglin, et al. The structural seismic response array of Shanghai World Financial Center [J]. Seismological and Geomagnetic Observation and Research, 2018, 39(6): 143 − 149. (in Chinese) doi: 10.3969/j.issn.1003-3246.2018.06.021 [14] GÓRSKI P. Dynamic characteristic of tall industrial chimney estimated from GPS measurement and frequency domain decomposition [J]. Engineering Structures, 2017, 148: 277 − 292. [15] 郭西锐, 王立新, 姜慧, 等. 地王大厦强震动监测与动力分析[J]. 华南地震, 2017, 37(1): 73 − 79.GUO Xirui, WANG Lixin, JIANG Hui, et al. Strong motion monitoring and dynamic analysis of Diwang Plaza [J]. South China Journal of Seismology, 2017, 37(1): 73 − 79. (in Chinese) [16] 韦永祥. 基于强震和风振记录分析隔震结构的动力特性[D]. 哈尔滨: 中国地震局工程力学研究所, 2006.WEI Yongxiang. Analysis of dynamic property of base-isolated building based on strong seismic motion and wind-vibration records [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2006. (in Chinese) [17] 王飞, 胡平, 王湘南, 等. 北京市人大办公楼的结构地震反应观测台阵研究[J]. 地震地磁观测与研究, 2006, 27(2): 68 − 73. doi: 10.3969/j.issn.1003-3246.2006.02.014WANG Fei, HU Ping, WANG Xiangnan, et al. The structural seismic response observation array in the office building of the standing committee of Beijing People's Congress [J]. Seismological and Geomagnetic Observation and Research, 2006, 27(2): 68 − 73. (in Chinese) doi: 10.3969/j.issn.1003-3246.2006.02.014 [18] HONG A L, BETTI R, LIN C-C. Identification of dynamic models of a building structure using multiple earthquake records [J]. Structural Control and Health Monitoring, 2009, 16(2): 178 − 199. doi: 10.1002/stc.289 [19] CHEN J D, LOH C H. Tracking modal parameters of building structures from experimental studies and earthquake response measurements [J]. Structural Health Monitoring, 2017, 16(5): 551 − 567. doi: 10.1177/1475921717696339 [20] ÇELEBI M, GHAHARI S F, HADDADI H, et al. Response study of the tallest California building inferred from the Mw7.1 Ridgecrest, California earthquake of 5 July 2019 and ambient motions [J]. Earthquake Spectra, 2020, 36(3): 1096 − 1118. doi: 10.1177/8755293020906836 [21] EBRAHIMIAN M, TODOROVSKA M I. Structural system identification of buildings by a wave method based on a nonuniform Timoshenko beam model [J]. Journal of Engineering Mechanics, 2015, 141(8): 04015022. doi: 10.1061/(ASCE)EM.1943-7889.0000933 [22] RAHMANI M, TODOROVSKA M I. Structural health monitoring of a 54-story steel-frame building using a wave method and earthquake records [J]. Earthquake Spectra, 2015, 31(1): 501 − 525. doi: 10.1193/112912EQS339M [23] DUNAND F, RODGERS J E, ACOSTA A V, et al. Ambient vibration and earthquake strong-motion data sets for selected USGS extensively instrumented buildings [R]. California: U. S. Department of the Interior, U. S. Geological Survey, 2004. [24] ROJAS F R, ANDERSON J C. Pounding of an 18-Story building during recorded earthquakes [J]. Journal of Structural Engineering, 2012, 138(12): 1530 − 1544. doi: 10.1061/(ASCE)ST.1943-541X.0000541 [25] KOHLER M D, DAVIS P M, SAFAK E. Earthquake and ambient vibration monitoring of the steel-frame UCLA Factor building [J]. Earthquake Spectra, 2005, 21(3): 715 − 736. doi: 10.1193/1.1946707 [26] SADHU A, HAZRA B. A novel damage detection algorithm using time-series analysis-based blind source separation [J]. Shock and Vibration, 2013, 20(3): 423 − 438. doi: 10.1155/2013/237805 [27] HWANG S H, LIGNOS D. Proposed methodology for earthquake-induced loss assessment of instrumented steel frame buildings: building-specific and city-scale approaches [C]// Proceedings of the 6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Greece, Papadrakakis: COMPDYN, 2017. [28] PANDEY B H. Investigation of variation of motions between free field and foundation in seismic soil-structure interaction of structures with rigid shallow foundation [D]. Vancouver: British University of British Columbia, 2002. [29] GOEL R K, CHADWELL C. Evaluation of current nonlinear static procedures for concrete buildings using recorded strong-motion data [R]. California: California Strong Motion Instrumentation Program, 2007. [30] YESILYURT A, AKRAM M R, ZULFIKAR A C. Assessment of engineering demand parameters through SHM for RC-structures [J]. Journal of Civil Structural Health Monitoring, 2019, 9(2): 253 − 261. doi: 10.1007/s13349-019-00333-y [31] GHAHARI S F, ABAZARSA F, AVCI O, et al. Blind identification of the Millikan Library from earthquake data considering soil-structure interaction [J]. Structural Control and Health Monitoring, 2016, 23(4): 684 − 706. doi: 10.1002/stc.1803 [32] CHENG M H, HEATON T H. Simulating building motions using ratios of the Building's natural frequencies and a Timoshenko beam model [J]. Earthquake Spectra, 2015, 31(1): 403 − 420. doi: 10.1193/011613EQS003M [33] TACIROGLU E, GHAHARI S F, ABAZARSA F. Efficient model updating of a multi-story frame and its foundation stiffness from earthquake records using a Timoshenko beam model [J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 25 − 35. doi: 10.1016/j.soildyn.2016.09.041 [34] HERNANDEZ E M, MAY G. Dissipated energy ratio as a feature for earthquake-induced damage detection of instrumented structures [J]. Journal of Engineering Mechanics, 2013, 139(11): 1521 − 1529. doi: 10.1061/(ASCE)EM.1943-7889.0000534 [35] DOWGALA J D. Detecting and quantifying damage in buildings using earthquake response data and capacity curves [D]. Purdue: Purdue University, 2013. [36] KASAI K, MITA A, KITAMURA H, et al. Performance of seismic protection technologies during the 2011 Tohoku-Oki earthquake [J]. Earthquake Spectra, 2020, 29(Suppl 1): 265 − 293. [37] SIRINGORINGO D M, FUJINO Y. Long-term seismic monitoring of base-isolated building with emphasis on serviceability assessment [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(4): 637 − 655. [38] CERAVOLO R, MATTA E, QUATTRONE A, et al. Amplitude dependence of equivalent modal parameters in monitored buildings during earthquake swarms [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(14): 2399 − 2417. [39] BORSAIKIA A C, DUTTA A, DEB S K. System identification of multistoreyed non-standard shear building using parametric state space modeling [J]. Structural Control and Health Monitoring, 2011, 18(4): 471 − 480. doi: 10.1002/stc.385 [40] 肖承波, 吴体, 高永昭, 等. 地震后建筑物安全性应急评估探讨[J]. 四川建筑科学研究, 2015, 41(5): 38 − 42. doi: 10.3969/j.issn.1008-1933.2015.05.009XIAO Chengbo, WU Ti, GAO Yongzhao, et al. The discussion about emergency assessment of safety of post-earthquake buildings [J]. Sichuan Building Science, 2015, 41(5): 38 − 42. (in Chinese) doi: 10.3969/j.issn.1008-1933.2015.05.009 [41] 周福霖, 崔鸿超, 安部重孝, 等. 东日本大地震灾害考察报告[J]. 建筑结构, 2012, 42(4): 1 − 20.ZHOU Fulin, CUI Hongchao, SHIGETAKA ABE, et al. Inspection report of the disaster of the East Japan earthquake by Sino-Japanese joint mission [J]. Building Structure, 2012, 42(4): 1 − 20. (in Chinese) [42] YAMAMOTO M, SONE T. Behavior of active mass damper (AMD) installed in high-rise building during 2011 earthquake off Pacific coast of Tohoku and verification of regenerating system of AMD based on monitoring [J]. Structural Control and Health Monitoring, 2014, 21(4): 634 − 647. doi: 10.1002/stc.1590 [43] MINAMI Y, YOSHITOMI S, TAKEWAKI I. System identification of super high-rise buildings using limited vibration data during the 2011 Tohoku (Japan) earthquake [J]. Structural Control and Health Monitoring, 2013, 20(11): 1317 − 1338. [44] ÇELEBI M, HISADA Y, OMRANI R, et al. Responses of two tall buildings in Tokyo, Japan, before, during, and after the M9.0 Tohoku Earthquake of 11 March 2011 [J]. Earthquake Spectra, 2016, 32(1): 463 − 495. doi: 10.1193/092713EQS260M [45] ÇELEBI M, KASHIMA T, GHAHARI S F, et al. Responses of a tall building with US code-type instrumentation in Tokyo, Japan, to events before, during, and after the Tohoku earthquake of 11 March 2011 [J]. Earthquake Spectra, 2016, 32(1): 497 − 522. doi: 10.1193/052114EQS071M [46] NAKATA N, TANAKA W, ODA Y. Damage detection of a building caused by the 2011 Tohoku‐Oki earthquake with seismic interferometry [J]. Bulletin of the Seismological Society of America, 2015, 105(5): 2411 − 2419. doi: 10.1785/0120140220 [47] LOH C H, LIN H M. Application of off‐line and on‐line identification techniques to building seismic response data [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(3): 269 − 290. [48] 李慧民, 董美美, 熊雄, 等. 基于振动的结构损伤识别研究综述[J]. 建筑结构, 2021, 51(4): 45 − 50, 38.LI Huimin, DONG Meimei, XIONG Xiong, et al. State-of-the-art review of vibration-based damage identification framework for structures [J]. Building Structure, 2021, 51(4): 45 − 50, 38. (in Chinese) [49] ZLATEV Z, GOLUBOVSKI R, GICEV V. Data processing of displacements between the ground and the point of cracking at the seven–story Van Nuys Hotel [C]// Proceedings of the International Conference on Information Technology and Development of Education, Zrenjanin, Serbia: ITRO, 2016. [50] NI Y C, ZHANG F L. Fast Bayesian frequency domain modal identification from seismic response data [J]. Computers & Structures, 2019, 212(2): 225 − 235. [51] DONG Y, LI Y, LAI M. Structural damage detection using empirical-mode decomposition and vector autoregressive moving average model [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(3): 133 − 145. doi: 10.1016/j.soildyn.2009.10.002 [52] LI H, MAO C, OU J. Identification of hysteretic dynamic systems by using hybrid extended Kalman filter and wavelet multiresolution analysis with limited observation [J]. Journal of Engineering Mechanics, 2013, 139(5): 547 − 558. doi: 10.1061/(ASCE)EM.1943-7889.0000510 [53] NOH H Y, NAIR K K, LIGNOS D G, et al. Use of wavelet-based damage-sensitive features for structural damage diagnosis using strong motion data [J]. Journal of Structural Engineering, 2011, 137(10): 1215 − 1228. doi: 10.1061/(ASCE)ST.1943-541X.0000385 [54] 颜王吉, 王朋朋, 孙倩, 等. 基于振动响应传递比函数的系统识别研究进展[J]. 工程力学, 2018, 35(5): 10 − 18, 35. doi: 10.6052/j.issn.1000-4750.2017.01.0073YAN Wangji, WANG Pengpeng, SUN Qian, et al. Recent advances in system identification using the transmissibility function [J]. Engineering Mechanics, 2018, 35(5): 10 − 18, 35. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0073 [55] SILIK A, NOORI M, ALTABEY W A, et al. Selecting optimum levels of wavelet multi-resolution analysis for time-varying signals in structural health monitoring [J]. Structural Control and Health Monitoring, 2021, 28(8): e2762. [56] QUQA S, LANDI L, DIOTALLEVI P P. Modal assurance distribution of multivariate signals for modal identification of time-varying dynamic systems [J]. Mechanical Systems and Signal Processing, 2021, 148: 107136. doi: 10.1016/j.ymssp.2020.107136 [57] ISLAM M S. Analysis of the Northridge earthquake response of a damaged non‐ductile concrete frame building [J]. The Structural Design of Tall Buildings, 1996, 5(3): 151 − 182. doi: 10.1002/(SICI)1099-1794(199609)5:3<151::AID-TAL76>3.0.CO;2-4 [58] NAEIM F. Performance of 20 extensively-instrumented buildings during the 1994 Northridge earthquake [J]. The Structural Design of Tall Buildings, 1998, 7(3): 179 − 194. doi: 10.1002/(SICI)1099-1794(199809)7:3<179::AID-TAL113>3.0.CO;2-U [59] LLERA J C D L, CHOPRA A K, ALMAZÁN J L. Three-dimensional inelastic response of an RC building during the Northridge earthquake [J]. Journal of Structural Engineering, 2001, 127(5): 482 − 489. doi: 10.1061/(ASCE)0733-9445(2001)127:5(482) [60] GUPTA V K, NIELSEN S R K, KIRKEGAARD P H. A preliminary prediction of seismic damage-based degradation in RC structures [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(7): 981 − 993. [61] TRIFUNAC M D, IVANOVIC S S. Analysis of drifts in a seven-story reinforced concrete structure [R]. Los Angeles, California: Department of Civil Engineering, University of Southern California, 2003. [62] PORTER K A, BECK J L, CHING J, et al. Real-time loss estimation for instrumented buildings [R]. Pasadena, California: California Institute of Technology, 2004. [63] NAEIM F, LEE H, HAGIE S, et al. Three-dimensional analysis, real-time visualization, and automated post-earthquake damage assessment of buildings [J]. The Structural Design of Tall and Special Buildings, 2006, 15(1): 105 − 138. doi: 10.1002/tal.345 [64] CHING J, BECK J L, PORTER K A, et al. Bayesian state estimation method for nonlinear systems and its application to recorded seismic response [J]. Journal of Engineering Mechanics, 2006, 132(4): 396 − 410. doi: 10.1061/(ASCE)0733-9399(2006)132:4(396) [65] 公茂盛, 谢礼立, 连海宁, 等. 基于HHT的结构强震记录分析研究[J]. 地震工程与工程振动, 2007, 27(6): 24 − 29. doi: 10.3969/j.issn.1000-1301.2007.06.004GONG Maosheng, XIE Lili, LIAN Haining, et al. Study on analysis of structural strong motion records based on HHT [J]. Earthquake Engineering and Engineering Dynamic, 2007, 27(6): 24 − 29. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.06.004 [66] WANG J F, LIN C C, YEN S M. A story damage index of seismically-excited buildings based on modal frequency and mode shape [J]. Engineering Structures, 2007, 29(9): 2143 − 2157. doi: 10.1016/j.engstruct.2006.10.018 [67] DONG Y, LI Y, XIAO M, et al. Analysis of earthquake ground motions using an improved Hilbert–Huang transform [J]. Soil Dynamics and Earthquake Engineering, 2008, 28(1): 7 − 19. doi: 10.1016/j.soildyn.2007.05.002 [68] RODRÍGUEZ R, ESCOBAR J A, GÓMEZ R. Damage detection in instrumented structures without baseline modal parameters [J]. Engineering Structures, 2010, 32(6): 1715 − 1722. doi: 10.1016/j.engstruct.2010.02.021 [69] GIČEV V, TRIFUNAC M D. A note on predetermined earthquake damage scenarios for structural health monitoring [J]. Structural Control and Health Monitoring, 2012, 19(8): 746 − 757. doi: 10.1002/stc.470 [70] ROOHI M, HERNANDEZ E M, ROSOWSKY D. Reconstructing element-by-element dissipated hysteretic energy in instrumented buildings: application to the Van Nuys Hotel testbed [J]. Journal of Engineering Mechanics, 2021, 147(1): 04020141. doi: 10.1061/(ASCE)EM.1943-7889.0001864 [71] 翁顺, 朱宏平. 基于有限元模型修正的土木结构损伤识别方法[J]. 工程力学, 2021, 38(3): 1 − 16. doi: 10.6052/j.issn.1000-4750.2020.06.ST02WENG Shun, ZHU Hongping. Damage identification of civil structures based on finite element model updating [J]. Engineering Mechanics, 2021, 38(3): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.ST02 [72] SHAN J, ZHANG H, SHI W, et al. Health monitoring and field‐testing of high‐rise buildings: A review [J]. Structural Concrete, 2020, 21(4): 1272 − 1285. doi: 10.1002/suco.201900454 [73] 孙柏涛, 王旭, 柴相花, 等. 地震现场建筑物安全性鉴定量化方法[J]. 哈尔滨工业大学学报, 2009, 41(2): 129 − 132. doi: 10.3321/j.issn:0367-6234.2009.02.029SUN Baitao, WANG Xu, CHAI Xianghua, et al. A quantitative method for safety assessment of buildings in post-earthquake field [J]. Journal of Harbin Institute of Technology, 2009, 41(2): 129 − 132. (in Chinese) doi: 10.3321/j.issn:0367-6234.2009.02.029 [74] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 − 11, 24. doi: 10.6052/j.issn.1000-4750.2018.07.ST08LYU Dagang, LIU Yang, YU Xiaohui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering [J]. Engineering Mechanics, 2019, 36(9): 1 − 11, 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST08 [75] 单伽锃, 张寒青, 宫楠. 基于监测数据的结构地震损伤追踪与量化评估方法[J]. 工程力学, 2021, 38(1): 164 − 173. doi: 10.6052/j.issn.1000-4750.2020.03.0138SHAN Jiazeng, ZHANG Hanqing, GONG Nan. Tracking and quantitative evaluation of earthquake-induced structural damage using health monitoring data [J]. Engineering Mechanics, 2021, 38(1): 164 − 173. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0138 [76] KONG X, CAI C S, HU J. The state-of-the-art on framework of vibration-based structural damage identification for decision making [J]. Applied Sciences, 2017, 7(5): 497 − 527. doi: 10.3390/app7050497 [77] 李磊, 罗光喜, 王卓涵, 等. 震损钢筋混凝土柱剩余能力的数值模型[J]. 工程力学, 2020, 37(12): 59 − 74. doi: 10.6052/j.issn.1000-4750.2019.12.0789LI Lei, LUO Guangxi, WANG Zhuohan, et al. Numerical model for the residual seismic capacity of seismically damaged reinforced concrete columns [J]. Engineering Mechanics, 2020, 37(12): 59 − 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0789 [78] 高经纬, 张春涛. 基于长短时记忆网络的结构地震响应预测[J]. 工程抗震与加固改造, 2020, 42(3): 130 − 136.GAO Jingwei, ZHANG Chuntao. Structural seismic response prediction based on long short-term memory network [J]. Earthquake Resistant Engineering and Retrofitting, 2020, 42(3): 130 − 136. (in Chinese) [79] 汪鑫. 基于优化神经网络的多层钢筋混凝土结构地震响应预测[D]. 哈尔滨: 哈尔滨工业大学, 2020.WANG Xin. Prediction of seismic response of multistory reinforced concrete structures based on optimized neural network [D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) [80] 李书进, 赵源, 孔凡, 等. 卷积神经网络在结构损伤诊断中的应用[J]. 建筑科学与工程学报, 2020, 37(6): 29 − 37.LI Shujin, ZHAO Yuan, KONG Fan, et al. Application of convolutional neural network in structural damage identification [J]. Journal of Architecture and Civil Engineering, 2020, 37(6): 29 − 37. (in Chinese) [81] 杨静, 李大鹏, 翟长海, 等. 城市抗震韧性的研究现状及关键科学问题[J]. 中国科学基金, 2019, 33(5): 111 − 118.YANG Jing, LI Dapeng, ZHAI Changhai, et al. Key scientific issues in the urban earthquake resilience [J]. Bulletin of National Natural Science Foundation of China, 2019, 33(5): 111 − 118. (in Chinese) -