留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑剪切和扭转变形的有限质点法纤维梁单元研究

林贤宏 罗尧治 唐敬哲 汪伟 郑延丰 杨超

林贤宏, 罗尧治, 唐敬哲, 汪伟, 郑延丰, 杨超. 考虑剪切和扭转变形的有限质点法纤维梁单元研究[J]. 工程力学, 2022, 39(5): 34-43. doi: 10.6052/j.issn.1000-4750.2021.03.0184
引用本文: 林贤宏, 罗尧治, 唐敬哲, 汪伟, 郑延丰, 杨超. 考虑剪切和扭转变形的有限质点法纤维梁单元研究[J]. 工程力学, 2022, 39(5): 34-43. doi: 10.6052/j.issn.1000-4750.2021.03.0184
LIN Xian-hong, LUO Yao-zhi, TANG Jing-zhe, WANG Wei, ZHENG Yan-feng, YANG Chao. A FIBER BEAM ELEMENT FOR THE FINITE PARTICLE METHOD CONSIDERING SHEAR AND TORSION DEFORMATON[J]. Engineering Mechanics, 2022, 39(5): 34-43. doi: 10.6052/j.issn.1000-4750.2021.03.0184
Citation: LIN Xian-hong, LUO Yao-zhi, TANG Jing-zhe, WANG Wei, ZHENG Yan-feng, YANG Chao. A FIBER BEAM ELEMENT FOR THE FINITE PARTICLE METHOD CONSIDERING SHEAR AND TORSION DEFORMATON[J]. Engineering Mechanics, 2022, 39(5): 34-43. doi: 10.6052/j.issn.1000-4750.2021.03.0184

考虑剪切和扭转变形的有限质点法纤维梁单元研究

doi: 10.6052/j.issn.1000-4750.2021.03.0184
基金项目: 国家重点研发计划项目(2016YFC0800200);国家自然科学基金项目(51778568,51908492,52008366)
详细信息
    作者简介:

    林贤宏(1996−),男,福建人,硕士生,主要从事空间结构研究(E-mail: xhlin@zju.edu.cn)

    唐敬哲(1990−),男(满族),陕西人,博士生,主要从事空间结构研究 (E-mail: tangjingzhe@zju.edu.cn)

    汪 伟(1994−),男,安徽人,博士生,主要从事空间结构研究 (E-mail: william_wang@zju.edu.cn)

    郑延丰(1987−),男,福建人,特聘研究员,博士,主要从事空间结构研究 (E-mail: yanfeng39@zju.edu.cn)

    杨 超(1986−),男,浙江人,讲师,博士,主要从事空间结构研究(E-mail: 04tmgcyc@zju.edu.cn)

    通讯作者:

    罗尧治(1966−),男,浙江人,教授,博士,院长,主要从事空间结构研究 (E-mail: luoyz@zju.edu.cn)

  • 中图分类号: TU311

A FIBER BEAM ELEMENT FOR THE FINITE PARTICLE METHOD CONSIDERING SHEAR AND TORSION DEFORMATON

  • 摘要: 为提高有限质点法分析结构弹塑性问题的精度,该文将纤维梁模型融入有限质点法的计算求解框架中,推导了考虑剪切变形和扭转变形的有限质点法纤维梁单元的质点内力求解公式。该单元采用Timoshenko梁理论描述梁截面变形状态,以单元纯变形分量表示截面上任一点的位移,并结合纤维材料的三维本构关系以考虑弯曲、剪切和扭转变形之间的耦合作用。数值算例的分析结果表明,该纤维梁单元能够有效地模拟结构弹塑性行为,相较于塑性铰法具有更高的精度。
  • 图  1  梁单元的纯变形

    Figure  1.  Pure deformation of beam element

    图  2  典型截面的纤维离散

    Figure  2.  Fiber discretization of typical sections

    图  3  纤维梁单元示意图

    Figure  3.  Schematic diagram of fiber beam element

    图  4  空间直角刚架

    Figure  4.  Spatial right-angle frame

    图  5  空间直角刚架的荷载-位移曲线

    Figure  5.  Load-deflection curve of spatial right-angle frame

    图  6  空间直角刚架的荷载-位移曲线对比

    Figure  6.  Load-deflection curve comparison of spatial right-angle frame

    图  7  空间框架

    Figure  7.  Space frame

    图  8  空间框架的荷载-位移曲线

    Figure  8.  Load-deflection curve of space frame

    图  9  六角空间刚架 /m

    Figure  9.  Framed dome

    图  10  六角空间刚架顶点的荷载-位移曲线

    Figure  10.  Load-deflection curve of framed dome

    图  11  单层球面网壳结构

    Figure  11.  Single-layer spherical reticulated shell structure

    图  12  冲击荷载

    Figure  12.  Impact load

    图  13  节点A的竖向位移时程曲线(P0=10 kN)

    Figure  13.  Vertical displacement time history curve of node A (P0=10 kN)

    图  14  节点A的竖向位移时程曲线(P0=100 kN)

    Figure  14.  Vertical displacement time history curve of node A (P0=100 kN)

    表  1  计算机硬件参数

    Table  1.   Computer hardware parameters

    类别参数
    CPUIntel(R) Core(TM) i5-8500 @ 3.0 GHz
    GPUNVIDIA GeForce GTX 1050Ti
    内存8 GB
    下载: 导出CSV

    表  2  FPM与ANSYS的计算效率对比

    Table  2.   Calculation efficiency comparison between FPM and ANSYS

    类别计算时间 /s
    ANSYS (P0=10 kN)288
    FPM (P0=10 kN)56
    ANSYS (P0=100 kN)550
    FPM (P0=100 kN)56
    下载: 导出CSV
  • [1] Spacone E, Filippou F C, Taucer F F. Fibre beam-column model for non-linear analysis of R/C frames: Part Ⅰ. Formulation [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(7): 711 − 725.
    [2] Spacone E, Filippou F C, Taucer F F. Fibre beam-column model for non-linear analysis of R/C frames: Part Ⅱ. Applications [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(7): 727 − 742.
    [3] Ranzo G, Petrangeli M. A fibre finite beam element with section shear modelling for seismic analysis of RC structures [J]. Journal of Earthquake Engineering, Imperial College Press, 1998, 2(3): 443 − 473.
    [4] Marini A, Spacone E. Analysis of reinforced concrete elements including shear effects [J]. ACI Structural Journal, 2006, 103(5): 645 − 655.
    [5] Petrangeli M, Pinto P E, Ciampi V. Fiber element for cyclic bending and shear of RC structures. I: Theory [J]. Journal of Engineering Mechanics, ASCE, 1999, 125(9): 994 − 1001. doi: 10.1061/(ASCE)0733-9399(1999)125:9(994)
    [6] Petrangeli M. Fiber element for cyclic bending and shear of RC structures. II: Verification [J]. Journal of Engineering Mechanics, ASCE, 1999, 125(9): 1002 − 1009. doi: 10.1061/(ASCE)0733-9399(1999)125:9(1002)
    [7] Ceresa P, Petrini L, PINHO R, et al. A fibre flexure-shear model for seismic analysis of RC-framed structures [J]. Earthquake Engineering & Structural Dynamics, 2009, 38(5): 565 − 586.
    [8] 李忠献, 高营, 李宁. 基于结构精细化模拟分析平台的弯剪纤维单元模型[J]. 建筑结构学报, 2016, 37(9): 69 − 77.

    Li Zhongxian, Gao Ying, Li Ning. Refined simulation analysis platform of structures-based flexure-shear fiber element model [J]. Journal of Building Structures, 2016, 37(9): 69 − 77. (in Chinese)
    [9] Feng D C, Xu J. An efficient fiber beam-column element considering flexure–shear interaction and anchorage bond-slip effect for cyclic analysis of RC structures [J]. Bulletin of Earthquake Engineering, 2018, 16(11): 5425 − 5452. doi: 10.1007/s10518-018-0392-y
    [10] Feng D C, Wu J Y. Improved displacement-based Timoshenko beam element with enhanced strains [J]. Journal of Structural Engineering, ASCE, 2020, 146(3): 04019221. doi: 10.1061/(ASCE)ST.1943-541X.0002549
    [11] 聂建国, 王宇航, 樊健生. 考虑扭转作用的钢管混凝土纤维梁模型[J]. 工程力学, 2012, 29(10): 82 − 90. doi: 10.6052/j.issn.1000-4750.2010.12.0955

    Nie Jianguo, Wang Yuhang, Fan Jiansheng. Fiber beam-column model for concrete filled steel tube considering torsion effect [J]. Engineering Mechanics, 2012, 29(10): 82 − 90. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.12.0955
    [12] 胡郑州, 吴明儿. 考虑剪切效应三维纤维梁单元的几何非线性增量有限元分析[J]. 工程力学, 2014, 31(8): 134 − 143. doi: 10.6052/j.issn.1000-4750.2013.03.0170

    Hu Zhengzhou, Wu Ming'er. Geometrically nonlinear incremental finite element analysis of 3D fiber beam element considering shear effect [J]. Engineering Mechanics, 2014, 31(8): 134 − 143. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.03.0170
    [13] 陶慕轩, 丁然, 潘文豪, 等. 传统纤维模型的一些新发展[J]. 工程力学, 2018, 35(3): 1 − 21. doi: 10.6052/j.issn.1000-4750.2017.05.ST02

    Tao Muxuan, Ding Ran, Pan Wenhao, et al. Some advances in conventional fiber beam-column model [J]. Engineering Mechanics, 2018, 35(3): 1 − 21. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.ST02
    [14] 罗尧治, 郑延丰, 杨超, 等. 结构复杂行为分析的有限质点法研究综述[J]. 工程力学, 2014, 31(8): 1 − 7, 23. doi: 10.6052/j.issn.1000-4750.2013.05.ST14

    Luo Yaozhi, Zheng Yanfeng, Yang Chao, et al. Review of the finite particle method for complex behaviors of structures [J]. Engineering Mechanics, 2014, 31(8): 1 − 7, 23. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.ST14
    [15] Zheng Y, Yang C, Wan H P, et al. Dynamics analysis of spatial mechanisms with dry spherical joints with clearance using finite particle method [J]. International Journal of Structural Stability and Dynamics, 2020, 20(3): 2050035. doi: 10.1142/S0219455420500352
    [16] 郑延丰, 杨超, 刘磊, 等. 基于有限质点法的含间隙铰平面机构动力分析[J]. 工程力学, 2020, 37(3): 8 − 17. doi: 10.6052/j.issn.1000-4750.2019.04.0212

    Zheng Yanfeng, Yang Chao, Liu Lei, et al. Dynamics analysis of planar mechanism with revolute joint clearance based on finite particle method [J]. Engineering Mechanics, 2020, 37(3): 8 − 17. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0212
    [17] 喻莹, 许贤, 罗尧治. 基于有限质点法的结构动力非线性行为分析[J]. 工程力学, 2012, 29(6): 63 − 69, 84. doi: 10.6052/j.issn.1000-4750.2010.08.0746

    Yu Ying, Xu Xian, Luo Yaozhi. Dynamic nonlinear analysis of structures based on finite particle method [J]. Engineering Mechanics, 2012, 29(6): 63 − 69, 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.08.0746
    [18] 喻莹, 刘飞鸿, 王钦华, 等. 有限质点法阻尼构造问题的研究[J]. 工程力学, 2019, 36(11): 34 − 40. doi: 10.6052/j.issn.1000-4750.2018.12.0694

    Yu Ying, Liu Feihong, Wang Qinhua, et al. Study on damping in finite particle method [J]. Engineering Mechanics, 2019, 36(11): 34 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0694
    [19] 喻莹. 基于有限质点法的空间钢结构连续倒塌破坏研究 [D]. 杭州: 浙江大学, 2010.

    Yu Ying. Progressive collapse of space steel structures based on the finite particle method [D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
    [20] 张鹏飞, 罗尧治, 杨超. 薄壳屈曲问题的有限质点法求解[J]. 工程力学, 2017, 34(2): 12 − 20. doi: 10.6052/j.issn.1000-4750.2015.07.0623

    Zhang Pengfei, Luo Yaozhi, Yang Chao. Buckling analysis of thin shell using the finite particle method [J]. Engineering Mechanics, 2017, 34(2): 12 − 20. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.07.0623
    [21] 杨超, 罗尧治, 郑延丰. 正交异性膜材大变形行为的有限质点法求解[J]. 工程力学, 2019, 36(7): 18 − 29. doi: 10.6052/j.issn.1000-4750.2018.06.0318

    Yang Chao, Luo Yaozhi, Zheng Yanfeng. Large deformation analysis of orthotropic membranes using the finite particle method [J]. Engineering Mechanics, 2019, 36(7): 18 − 29. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0318
    [22] Yang C, Shen Y, Luo Y. An efficient numerical shape analysis for light weight membrane structures [J]. Journal of Zhejiang University, Science A, 2014, 15(4): 255 − 271. doi: 10.1631/jzus.A1300245
    [23] 郑延丰, 罗尧治. 基于有限质点法的多尺度精细化分析[J]. 工程力学, 2016, 33(9): 21 − 29. doi: 10.6052/j.issn.1000-4750.2015.02.0144

    Zheng Yanfeng, Luo Yaozhi. Multi-scale fine analysis based on the finite particle method [J]. Engineering Mechanics, 2016, 33(9): 21 − 29. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.02.0144
    [24] Tang J, Zheng Y, Yang C, et al. Parallelized implementation of the finite particle method for explicit dynamics in GPU [J]. Computer Modeling in Engineering & Sciences, 2020, 122(1): 5 − 31.
    [25] Duan Y F, He K, Zhang H M, et al. Entire-process simulation of earthquake-induced collapse of a mockup cable-stayed bridge by vector form intrinsic finite element (VFIFE) method [J]. Advances in Structural Engineering, 2014, 17(3): 347 − 360. doi: 10.1260/1369-4332.17.3.347
    [26] Liu J, Xu L, Lin M. Simulation of a buried pipeline crossing strike-slip fault based on vector form intrinsic finite element (VFIFE) method with fiber element model [C]// Rhodes, Greece: International Society of Offshore and Polar Engineers, 2016: 977 − 983.
    [27] 舒兴平, 沈蒲生. 空间钢框架结构的非线性全过程分析[J]. 工程力学, 1997, 14(3): 36 − 45.

    Shu Xingping, Shen Pusheng. A full range nonlinear analysis for space steel frames [J]. Engineering Mechanics, 1997, 14(3): 36 − 45. (in Chinese)
    [28] Simo J C, Hughes T J R. Computational inelasticity [M]. New York: Springer-Verlag, 1998.
    [29] Park M S, Lee B C. Geometrically non-linear and elastoplastic three-dimensional shear flexible beam element of von-mises-type hardening material [J]. International Journal for Numerical Methods in Engineering, 1996, 39(3): 383 − 408. doi: 10.1002/(SICI)1097-0207(19960215)39:3<383::AID-NME859>3.0.CO;2-F
    [30] Harrison H B. The application of the principles of plastic analysis to three dimensional steel structures [D]. Sydney: University of Sydney, 1965.
    [31] Teh L H, Clarke M J. Plastic-zone analysis of 3D steel frames using beam elements [J]. Journal of Structural Engineering, ASCE, 1999, 125(11): 1328 − 1337. doi: 10.1061/(ASCE)0733-9445(1999)125:11(1328)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  88
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 修回日期:  2021-06-07
  • 网络出版日期:  2021-06-29
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回