留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-混凝土交界面法向粘结性能研究

薛翔 胡少伟 齐浩 单常喜

薛翔, 胡少伟, 齐浩, 单常喜. 钢-混凝土交界面法向粘结性能研究[J]. 工程力学, 2022, 39(5): 65-74. doi: 10.6052/j.issn.1000-4750.2021.03.0182
引用本文: 薛翔, 胡少伟, 齐浩, 单常喜. 钢-混凝土交界面法向粘结性能研究[J]. 工程力学, 2022, 39(5): 65-74. doi: 10.6052/j.issn.1000-4750.2021.03.0182
XUE Xiang, HU Shao-wei, QI Hao, SHAN Chang-xi. STUDY ON THE NORMAL BONDING PERFORMANCE OF THE STEEL-CONCRETE INTERFACE[J]. Engineering Mechanics, 2022, 39(5): 65-74. doi: 10.6052/j.issn.1000-4750.2021.03.0182
Citation: XUE Xiang, HU Shao-wei, QI Hao, SHAN Chang-xi. STUDY ON THE NORMAL BONDING PERFORMANCE OF THE STEEL-CONCRETE INTERFACE[J]. Engineering Mechanics, 2022, 39(5): 65-74. doi: 10.6052/j.issn.1000-4750.2021.03.0182

钢-混凝土交界面法向粘结性能研究

doi: 10.6052/j.issn.1000-4750.2021.03.0182
基金项目: 重庆市技术创新与应用发展专项重点项目(cstc2019jscx-gksbx0013) ;重庆市自然科学基金创新群体项目(cstc2020jcyj-cxttX0003)
详细信息
    作者简介:

    薛 翔(1994−),男,江苏人,博士生,主要从事混凝土断裂方面研究(E-mail: wdmzjxx@live.com)

    齐 浩(1995−),男,河南人,博士生,主要从事组合结构装配式方面研究(E-mail: qihao@cqu.edu.cn)

    单常喜(1995−),男,山东人,博士生,主要从事组合结构装配式方面研究(E-mail: shanchangxi@outlook.com)

    通讯作者:

    胡少伟(1969−),男,河南人,教授级高工,博士,博导,主要从事钢-混凝土组合结构方面的研究(E-mail: hushaowei@cqu.edu.cn)

  • 中图分类号: TU398+.9

STUDY ON THE NORMAL BONDING PERFORMANCE OF THE STEEL-CONCRETE INTERFACE

  • 摘要: 考虑到钢-混凝土交界面的特殊性,提出了三个用于评价交界面法向粘结性能的参数指标,包括法向粘结刚度、法向粘结强度和法向极限张开位移,使用断裂力学理论推导了参数的计算方法,设计并进行了钢-混凝土交界面法向粘结参数测定试验。试验结果表明:在交界面粘结力的作用下,试验荷载-裂缝口张开位移(P-CMOD)曲线初始上升段会经历线性段、过渡段和平台段三个阶段;随着钢板粗糙度的增加,交界面法向粘结强度的增幅要远大于法向粘结刚度和法向极限张开位移的增幅;单位粗糙度交界面各个法向粘结性能参数的增量随着钢板粗糙度的增加而减小,其中法向极限张开位移值的增量降低最多;在钢板足够粗糙的情况下,交界面的法向粘结性能应趋近于交界面处砂浆的力学性能。将理论计算结果与有限元分析结果进行对比,两者吻合度很好,表明理论分析方法和试验方法的正确性,计算得到的交界面法向粘结参数值可用于实际工程分析。
  • 图  1  钢板半嵌入式三点弯曲梁试件示意图 /mm

    Figure  1.  Schematic of three-point bending beam specimen with a semi embedded steel plate

    图  2  钢板与试模实物图

    Figure  2.  Steel plate and specimen mould

    图  3  试验用3种粗糙度钢板

    Figure  3.  Steel plates with three kinds of surface roughness

    图  4  试验装置

    Figure  4.  Test equipment

    图  5  测点分布图

    Figure  5.  Distribution map of measuring points

    图  6  钢-混凝土的粘结力应力强度因子的确定

    Figure  6.  Determination of steel-concrete bonding stress intensity factor

    图  7  钢-混凝土法向粘结本构

    Figure  7.  Steel-concrete normal bonding constitutive model

    图  8  交界面粘结力作用下的无限窄条

    Figure  8.  An infinite narrow strip under the effect of interface bonding force

    图  9  试件断裂图

    Figure  9.  Fracture of specimen

    图  10  嵌有钢板和不含钢板三点弯试件的P-CMOD曲线图

    Figure  10.  P-CMOD curves of three-point bending beam specimens with and without steel plates

    图  11  嵌有钢板三点弯试件P-CMOD曲线局部放大图

    Figure  11.  Partial enlargement of P-CMOD curve of the three-point bending beam specimen with a steel plate

    图  12  嵌有不同粗糙度钢板试件的法向粘结刚度值

    Figure  12.  Normal bonding stiffness of specimens with different surface roughness steel plates

    图  13  嵌有钢板试件底部交界面附近的应变-载荷曲线

    Figure  13.  Strain-load curve near the bottom interface of specimen with a steel plate

    图  14  嵌有不同粗糙度钢板试件的法向粘结强度值

    Figure  14.  Normal bonding strength of specimens with different surface roughness steel plates

    图  15  嵌有不同粗糙度钢板试件的法向极限位移值

    Figure  15.  Normal limit opening displacement of specimens with different surface roughness steel plates

    图  16  试件C50-30-2二维有限元模型

    Figure  16.  Two-dimensional finite element model of specimen C50-30-2

    图  17  有限元结果与试验结果的对比

    Figure  17.  Comparison between finite element analysis results and test results

    图  18  交界面底部粘性单元的完全破坏

    Figure  18.  Complete failure of the cohesive element at the bottom interface

    表  1  交界面法向粘结刚度的计算值

    Table  1.   Calculated values of interface normal bonding stiffness

    试件编号数据点编号P0应力
    强度因子$K_{\text{c} }^0 $
    P1应力
    强度因子$ K_{\text{c} }^{\text{1} } $
    法向粘结
    刚度$ {k_\rm{ {i} } } $
    法向粘结
    刚度$ {k_\rm{ {i} } } $平均
    试件编号数据点编号P0应力
    强度因子$ K_{\text{c} }^0 $
    P1应力
    强度因子$ K_{\text{c} }^{\text{1} } $
    法向粘结
    刚度$ {k_\rm{ {i} } } $
    法向粘结
    刚度$ {k_\rm{ {i} } } $平均
    C50-30-1 1 1.36 1.52 4.07 12.61 C50-50-4 1 1.44 4.71 84.59 62.55
    2 2.12 2.85 12.81 2 2.15 5.41 56.82
    3 2.75 4.33 20.96 3 2.74 6.17 46.27
    C50-30-2 1 0.72 2.87 109.98 102.81 C50-50-5 1 2.77 4.71 26.18 31.03
    2 1.00 3.90 102.24 2 4.01 7.70 33.30
    3 1.42 5.23 96.21 3 5.16 10.12 33.63
    C50-30-3 1 0.75 2.11 67.40 68.29 C50-80-1 1 1.03 4.92 140.54 136.75
    2 1.44 3.96 65.04 2 1.70 8.44 146.83
    3 1.73 5.17 72.45 3 2.47 10.54 122.89
    C50-30-4 1 1.03 2.54 54.57 59.07 C50-80-2 1 1.04 5.50 161.78 144.60
    2 1.55 4.13 60.93 2 1.70 8.14 140.58
    3 2.15 5.65 61.72 3 2.40 10.85 131.44
    C50-30-5 1 0.69 3.07 128.45 125.95 C50-80-3 1 2.14 7.64 100.37 100.75
    2 1.20 5.33 131.61 2 2.71 10.28 103.60
    3 1.59 6.53 117.81 3 3.41 12.45 98.30
    C50-50-1 1 1.44 5.75 112.71 114.95 C50-80-4 1 0.75 5.17 218.15 200.13
    2 2.15 8.97 121.13 2 1.12 6.77 193.57
    3 2.77 11.08 111.02 3 1.39 8.37 188.68
    C50-50-2 1 0.75 5.09 215.50 175.77 C50-80-5 1 1.42 2.91 40.19 51.83
    2 1.12 5.62 152.88 2 2.74 6.49 50.79
    3 1.39 7.02 158.97 3 3.94 11.01 64.50
    C50-50-3 1 1.09 5.16 146.14 146.48
    2 1.70 8.82 154.79
    3 2.40 11.21 138.52
    注:① $K_{\text{c}}^0$和$K_{\text{c}}^{\text{1}}$的单位均为MPa·mm1/2;② $ {k_\rm{ {i} } } $的单位为MPa/mm;③ 试件编号C50-30-1的含义是C50强度的嵌有30 Ra钢板的1号梁,其他编号的含义以此类推。
    下载: 导出CSV

    表  2  交界面法向粘结强度和法向极限张开位移

    Table  2.   Interface normal bonding strength and normal limit opening displacement

    试件编号$ 临界法向张开位移\delta _{\text{n} }^{\text{c} } $$法向粘结强度 t_{\text{n} }^{\text{c} } $$ 法向极限张开位移 \delta _{\text{n} }^{\text{u} } $
    C50-30-1 0.004 57 0.0568
    C50-30-2 0.002 46 0.2494 0.007 91
    C50-30-3 0.002 76 0.1858 0.009 48
    C50-30-4 0.003 42 0.1992 0.013 00
    C50-30-5 0.002 54 0.3154 0.006 13
    C50-50-1 0.004 88 0.5531 0.013 40
    C50-50-2 0.002 01 0.3484 0.013 00
    C50-50-3 0.002 13 0.4203 0.014 50
    C50-50-4 0.004 18 0.2578
    C50-50-5 0.009 96 0.3048
    C50-80-1 0.003 96 0.5340 0.008 59
    C50-80-2 0.003 93 0.5603 0.020 40
    C50-80-3 0.005 43 0.5395 0.015 10
    C50-80-4 0.003 76 0.5431 0.013 90
    C50-80-5 0.006 96 0.3557 0.015 90
    注:① $\delta _{\text{n}}^{\text{c}}$和$\delta _{\text{n}}^{\text{u}}$的单位均为mm;② $t_{\text{n}}^{\text{c}}$的单位为MPa。
    下载: 导出CSV
  • [1] Zheng J, Wang J. Concrete-filled steel tube arch bridges in China [J]. Engineering, 2018, 4(1): 143 − 155. doi: 10.1016/j.eng.2017.12.003
    [2] Alatshan F, Osman S A, Hamid R, et al. Stiffened concrete-filled steel tubes: A systematic review [J]. Thin-Walled Structures, 2020, 148: 106590. doi: 10.1016/j.tws.2019.106590
    [3] Zhai K, Fang H, Guo C, et al. Full-scale experiment and numerical simulation of prestressed concrete cylinder pipe with broken wires strengthened by prestressed CFRP [J]. Tunnelling and Underground Space Technology, 2021, 115: 104021. doi: 10.1016/j.tust.2021.104021
    [4] 童林, 夏桂云, 吴美君, 等. 钢管混凝土脱空的探讨[J]. 公路, 2003(5): 16 − 20. doi: 10.3969/j.issn.0451-0712.2003.05.004

    Tong Lin, Xia Guiyun, Wu Meijun, et al. Discussion on debonding of concrete filled steel tube [J]. Highway, 2003(5): 16 − 20. (in Chinese) doi: 10.3969/j.issn.0451-0712.2003.05.004
    [5] 张伟杰, 廖飞宇, 李威. 带圆弓形脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能试验研究[J]. 工程力学, 2019, 36(12): 121 − 133. doi: 10.6052/j.issn.1000-4750.2018.12.0713

    Zhang Weijie, Liao Feiyu, Li Wei. Experimental study on the cyclic behavior of concrete-filled steel tubular (CFST) members with circular-segment gaps under combined comperssion-bending-torsion loading [J]. Engineering Mechanics, 2019, 36(12): 121 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0713
    [6] 唐亮, 樊健生, 聂建国, 等. 角钢连接件力学性能及混凝土脱空对其影响研究[J]. 工程力学, 2020, 37(10): 45 − 55, 115. doi: 10.6052/j.issn.1000-4750.2019.10.0621

    Tang Liang, Fan Jiansheng, Nie Jianguo, et al. Experimental study on the mechanical performance of angle shear connectors with and without concrete gaps [J]. Engineering Mechanics, 2020, 37(10): 45 − 55, 115. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0621
    [7] Bahrami A, Nematzadeh M. Bond behavior of lightweight concrete-filled steel tubes containing rock wool waste after exposure to high temperatures [J]. Construction and Building Materials, 2021, 300: 124039. doi: 10.1016/j.conbuildmat.2021.124039
    [8] 朱俊杰, 胡少伟. 钢套筒混凝土压力管道(SSCP)外载超载试验研究[J]. 水利水电技术, 2018, 49(3): 59 − 66.

    Zhu Junjie, Hu Shaowei. Study on external overload experiment of steel sleeve concrete pipeline (SSCP) [J]. Water Resources and Hydropower Engineering, 2018, 49(3): 59 − 66. (in Chinese)
    [9] 胡少伟, 薛翔, 孙岳阳, 等. 地基沉降对BCCP接口力学性能影响的试验研究[J]. 人民长江, 2018, 49(11): 91 − 96.

    Hu Shaowei, Xue Xiang, Sun Yueyang, et al. Experimental study on mechanical properties of BCCP joint under foundation settlement [J]. Yangtze River, 2018, 49(11): 91 − 96. (in Chinese)
    [10] Virdi K, Dowling P. Bond strength in concrete filled circular steel tubes [C]// CESLIC Report CC11. London, Imperial College, 1975.
    [11] Shakir-Khalil H. Pushout strength of concrete-filled steel hollow section tubes [J]. Structural Engineer, 1993, 71(13): 230 − 233.
    [12] Aly T, Elchalakani M, Thayalan P, et al. Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns [J]. Journal of Constructional Steel Research, 2010, 66(1): 11 − 18. doi: 10.1016/j.jcsr.2009.08.002
    [13] Tao Z, Han L H, Uy B, et al. Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns [J]. Journal of Constructional Steel Research, 2011, 67(3): 484 − 496. doi: 10.1016/j.jcsr.2010.09.006
    [14] 陈宗平, 刘祥, 徐金俊, 等. 高温后方钢管高强混凝土界面黏结性能试验研究[J]. 建筑结构学报, 2017, 38(6): 133 − 143.

    Chen Zongping, Liu Xiang, Xu Jinjun, et al. Study on interface bond behavior of high strength concrete filled square steel tube after high temperatures [J]. Journal of Building Structures, 2017, 38(6): 133 − 143. (in Chinese)
    [15] 张永宁. 管内混凝土脱空检测新方法及脱空对钢管砼拱桥力学性能影响的研究[D]. 重庆: 重庆交通大学, 2013.

    Zhang Yongning. Concrete-empty testing and the mechanical property Influence of CFST arch bridge cause by concretes empty [D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese)
    [16] 刘振宇, 陈宝春. 钢管混凝土界面法向粘结强度试验研究[J]. 广西大学学报(自然科学版), 2012, 37(4): 698 − 705.

    Liu Zhenyu, Chen Baochun. An experimental study on interfacial bond strength of concrete filled steel tube [J]. Journal of Guangxi University (Natural Science Edition), 2012, 37(4): 698 − 705. (in Chinese)
    [17] 余新盟, 陈文杰, 陈宝春. 钢-混界面法向粘结强度测定及统计分析[J]. 东莞理工学院学报, 2016, 23(5): 83 − 90. doi: 10.3969/j.issn.1009-0312.2016.05.015

    Yu Xinmeng, Chen Wenjie, Chen Baochun. Measurement and statistical analysis of normal bonding strength between steel and concrete [J]. Journal of Dongguan University of Technology, 2016, 23(5): 83 − 90. (in Chinese) doi: 10.3969/j.issn.1009-0312.2016.05.015
    [18] 刘琦. 内约束栓钉与混凝土早期法向粘结强度试验研究[D]. 重庆: 重庆大学, 2018.

    Liu Qi. An experimental research on the bonding strength between internal bound stud and concrete [D]. Chongqing: Chongqing University, 2018. (in Chinese)
    [19] 王莉, 张少强, 刘平, 等. 钢-混凝土组合梁栓钉连接件界面黏结刚度研究[J]. 铁道建筑, 2021, 61(5): 14 − 16. doi: 10.3969/j.issn.1003⁃1995.2021.05.04

    Wang Li, Zhang Shaoqiang, Liu Ping, et al. Study on interfacial bonding stiffness of stud connectors in steel concrete composite girder [J]. Railway Engineering, 2021, 61(5): 14 − 16. (in Chinese) doi: 10.3969/j.issn.1003⁃1995.2021.05.04
    [20] 胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学, 2019, 36(12): 44 − 51. doi: 10.6052/j.issn.1000-4750.2018.12.0718

    Hu Shaowei, Yin Yangyang, Fan Bing, et al. Study of the doubie-K fracture parameters of concrete based on equivalent pure bending beams [J]. Engineering Mechanics, 2019, 36(12): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0718
    [21] 张正国. 应用叠加原理和对称—反对称原理计算正交各向异性板Griffith裂纹的应力强度因子 $ {{\rm{K}}_{\rm{I}}^*}{{\rm{K}}_{\rm{II}}^*} $[J]. 工程力学, 1985, 2(1): 6 − 24.

    Zhang Zhengguo. Calculation of stress intensity factors $ {{\rm{K}}_{\rm{I}}^*}{{\rm{K}}_{\rm{II}}^*} $ of Grittith cracks in the orthotropic plate by the application of superposition principle and symmetry-skewsymmetry principle [J]. Engineering Mechanics, 1985, 2(1): 6 − 24. (in Chinese)
    [22] Tada H. The stress analysis of cracks handbook [M]. New York: ASME Press, 2000.
    [23] Guinea G V, Pastor J Y, Planas J, et al. Stress intensity factor, compliance and CMOD for a general three-point-bend beam [J]. International Journal of Fracture, 1998, 89(2): 103 − 116. doi: 10.1023/A:1007498132504
    [24] Jenq Y S, Shah S P. A fracture toughness criterion for concrete [J]. Engineering Fracture Mechanics, 1985, 21(5): 1055 − 1069. doi: 10.1016/0013-7944(85)90009-8
    [25] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research, 1976, 6(6): 773 − 781. doi: 10.1016/0008-8846(76)90007-7
    [26] Cedolin L, Poli S D, Iori I. Tensile behavior of concrete [J]. Journal of Engineering Mechanics, 1987, 113(3): 431 − 449. doi: 10.1061/(ASCE)0733-9399(1987)113:3(431)
    [27] 徐世烺, 卜丹, 张秀芳. 不同尺寸楔入式紧凑拉伸试件双K断裂参数的试验测定[J]. 土木工程学报, 2008, 41(2): 70 − 76. doi: 10.3321/j.issn:1000-131X.2008.02.011

    Xu Shilang, Bu Dan, Zhang Xiufang. A study on double-K fracture parameters by using wedge-splitting test on compact tension specimens of various sizes [J]. China Civil Engineering Journal, 2008, 41(2): 70 − 76. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.02.011
    [28] GB 50010−2010(2015版), 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2015.

    GB 50010−2010 (2015 edition), Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  81
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 修回日期:  2021-07-25
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回