留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

琼州海峡海床地震反应特性的一维非线性分析

陈国兴 夏高旭 王彦臻 金丹丹

陈国兴, 夏高旭, 王彦臻, 金丹丹. 琼州海峡海床地震反应特性的一维非线性分析[J]. 工程力学, 2022, 39(5): 75-85. doi: 10.6052/j.issn.1000-4750.2021.03.0167
引用本文: 陈国兴, 夏高旭, 王彦臻, 金丹丹. 琼州海峡海床地震反应特性的一维非线性分析[J]. 工程力学, 2022, 39(5): 75-85. doi: 10.6052/j.issn.1000-4750.2021.03.0167
CHEN Guo-xing, XIA Gao-xu, WANG Yan-zhen, JIN Dan-dan. ONE-DIMENSIONAL NONLINEAR SEISMIC RESPONSE ANALYSIS FOR SEABED SITE EFFECT ASSESSMENT IN THE QIONGZHOU STRAIT[J]. Engineering Mechanics, 2022, 39(5): 75-85. doi: 10.6052/j.issn.1000-4750.2021.03.0167
Citation: CHEN Guo-xing, XIA Gao-xu, WANG Yan-zhen, JIN Dan-dan. ONE-DIMENSIONAL NONLINEAR SEISMIC RESPONSE ANALYSIS FOR SEABED SITE EFFECT ASSESSMENT IN THE QIONGZHOU STRAIT[J]. Engineering Mechanics, 2022, 39(5): 75-85. doi: 10.6052/j.issn.1000-4750.2021.03.0167

琼州海峡海床地震反应特性的一维非线性分析

doi: 10.6052/j.issn.1000-4750.2021.03.0167
基金项目: 国家重点研发计划项目(2017YFC1500403);国家自然科学基金项目(51438004)
详细信息
    作者简介:

    夏高旭(1996−),男,河南人,硕士生,主要从事岩土地震工程研究(E-mail: xgx1514@163.com)

    王彦臻(1990−),男,山西人,博士生,主要从事岩土地震工程研究(E-mail: soledadwang@163.com)

    金丹丹(1987−),女,江苏人,副教授,工学博士,主要从事土动力学研究(E-mail: jddnjut@163.com)

    通讯作者:

    陈国兴(1963−),男,浙江人,教授,工学博士,主要从事土动力学与岩土地震工程研究(E-mail: gxc6307@163.com)

  • 中图分类号: TU433

ONE-DIMENSIONAL NONLINEAR SEISMIC RESPONSE ANALYSIS FOR SEABED SITE EFFECT ASSESSMENT IN THE QIONGZHOU STRAIT

  • 摘要: 深软海床上修建跨海通道并确保其地震安全是一项重大的工程挑战。选取拟建琼州海峡海底隧道沿线4个典型钻孔剖面进行一维非线性地震反应分析,研究了输入地震动特性、土体动力本构模型的选取对海床非线性地震反应特性的影响。结果表明:与MKZ模型相比,DCZ模型能更好地模拟地震动的某些高频和中-长周期分量在海床土层中的传播;海床35 m以浅和80 m~160 m深土层对0.6 Hz~1.1 Hz地震波传播的放大效应显著。对于0.2 g基岩地震动水平,海床地表峰值加速度达0.297 g,相当于地震烈度Ⅷ度水平,这与历史最大影响烈度是一致的;依据海床场地效应特征,累积绝对速度CAV是一个更合适的地震动强度指标。在周期0.05 s~0.5 s范围内,依据《中国地震动参数区划图》反应谱设计跨海通道将偏于不安全。
  • 图  1  琼州海峡地层的典型钻孔和剪切波速剖面

    Figure  1.  Shear-wave velocity profiles and the soil lithology with depth in the typical boreholes, Qiongzhou Strait

    图  2  场地反应计算模型

    Figure  2.  Simulation model of site response

    图  3  DCZ模型描述的应力-应变关系示意图

    Figure  3.  Stress-strain curves of the DCZ Model under irregular loading-unloading-reloading

    图  4  琼州海峡海洋土的动剪切模量比与阻尼比曲线

    Figure  4.  Variations of shear modulus reduction and damping ratio curves of marine soils in the Qiongzhou Strait

    图  5  输入基岩地震动的加速度时程、傅氏谱值谱、5%阻尼比谱加速度及频域累积能量比曲线(PGA = 0.1 g)

    Figure  5.  Bedrock motion (NS) time histories, Fourier spectra, 5% damping spectral accelerations, and cumulative distributions for frequency domain energy (0.1 g level)

    图  6  场地基本频率的确定

    Figure  6.  Determination of site fundamental frequency

    图  7  不同基岩地震动激励时钻孔ZK-11剖面的地震动加速度传递函数随深度的变化

    Figure  7.  Variation of the Fourier spectrum amplitude ratios with depth at the ZK-11 borehole profile subjected to various bedrock motions

    图  8  不同基岩地震动激励时钻孔ZK-11剖面的PA随土层深度的变化

    Figure  8.  Variation of peak accelerations with depth at the ZK-11 borehole profile subjected to various bedrock motions

    图  9  不同基岩地震动激励时钻孔ZK-11剖面的谱加速度随深度的变化

    Figure  9.  Variation of spectrum accelerations with depth at the ZK-11 borehole profile subjected to various bedrock motions

    图  10  不同地震动激励时钻孔ZK-11剖面的地表谱加速度(PBA = 0.4 g)

    Figure  10.  Spectral accelerations at the ZK-11 borehole surface subjected to various bedrock motions with PBA = 0.4 g

    图  11  不同地震动激励时海床地表峰值加速度PGA、地震动有效持时D5~95和累积绝对速度CAV

    Figure  11.  Peak ground accelerations (PGAs), 5~95% significant durations (D5~95), and cumulative absolute velocities (CAV) at the seabed surface subjected to various bedrock motions

    图  12  规准化地表加速度反应谱β

    Figure  12.  Normalized ground motion acceleration response spectrum β spectra at the seabed surface

    表  1  基岩输入地震动的原始地震记录信息

    Table  1.   Information of original earthquake recordings for bedrock input motions

    台站地震或震源位置地震时间/年地震动分量震级M震中距/kmPA/g持时D5~95/s卓越周期Tp/s卓越频率fp/Hz
    经度/°E纬度/°N
    TCG012 140.08 36.13 2020 NS 4.8 30 0.042 9.60 0.24 4.17
    UD 0.035 13.98 0.09 11.10
    IWT013 142.70 39.50 2011 NS 6.1 102 0.033 25.37 0.08 12.50
    UD 0.017 28.52 0.17 5.88
    HRS005 133.36 35.28 2000 NS 7.3 56 0.260 19.12 0.14 7.14
    UD 0.176 19.77 0.07 14.28
    注:D5~95为5%~95%的有效持时;UD分量仅用于HVSR法计算场地基本周期。
    下载: 导出CSV
  • [1] 陈亮, 张玉芬, 李团结, 等. 琼州海峡及周边海域沉积环境及近万年以来沉积演化[J]. 地球科学(中国地质大学学报), 2014, 39(6): 696 − 704. doi: 10.3799/dqkx.2014.065

    Chen Liang, Zhang Yufen, Li Tuanjie, et al. Sedimentary environment and its evolution of Qiongzhou Strait and nearby seas since last ten thousand years [J]. Earth Science-Journal of China University of Geosciences, 2014, 39(6): 696 − 704. (in Chinese) doi: 10.3799/dqkx.2014.065
    [2] 李振, 彭华, 马秀敏, 等. 琼州海峡古河道及其工程地质评价[J]. 工程地质学报, 2018, 26(4): 1017 − 1024.

    Li Zhen, Peng Hua, Ma Xiumin, et al. Paleochannels and engineering geological evaluation along Qiongzhou Strait [J]. Journal of Engineering Geology, 2018, 26(4): 1017 − 1024. (in Chinese)
    [3] 谭忠盛, 贺维国, 王梦恕. 琼州海峡工程地质条件及铁路隧道方案研究[J]. 隧道建设, 2018, 38(1): 1 − 7. doi: 10.3973/j.issn.2096-4498.2018.01.001

    Tan Zhongsheng, He Weiguo, Wang Mengshu. Study of engineering geological conditions and railway tunnel scheme across Qiongzhou Strait [J]. Tunnel Construction, 2018, 38(1): 1 − 7. (in Chinese) doi: 10.3973/j.issn.2096-4498.2018.01.001
    [4] 孙田, 陈国兴, 周恩全, 等. 琼州海峡100 m以浅海洋土动剪切模量比和阻尼比试验研究[J]. 岩土工程学报, 2013, 35(增刊 2): 375 − 382.

    Sun Tian, Chen Guoxing, Zhou Enquan, et al. Experimental study on dynamic shear modulus ratio and damping ratio of marine soils in Qiongzhou Strait with depth less than 100 m [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl 2): 375 − 382. (in Chinese)
    [5] 孙田, 陈国兴, 周恩全, 等. 深层海床粉质黏土动剪切模量和阻尼比试验研究[J]. 土木工程学报, 2012, 45(增刊 1): 9 − 14.

    Sun Tian, Chen Guoxing, Zhou Enquan, et al. Experimental research on the dynamic shear modulus and the damping ratio of deep-seabed marine silty clay [J]. Chinese Journal of Geotechnical Engineering, 2012, 45(Suppl 1): 9 − 14. (in Chinese)
    [6] Chen Guoxing, Jin Dandan, Zhu Jiao, et al. Nonlinear analysis on seismic site response of Fuzhou Basin, China [J]. Bulletin of the Seismological Society of America, 2015, 105(2A): 928 − 949. doi: 10.1785/0120140085
    [7] 陈国兴, 李磊, 丁杰发, 等. 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056 − 3065, 3076.

    Chen Guoxing, Li Lei, Ding Jiefa, et al. Nonlinear seismic response characteristics of extremely deep deposit site with volcanic hard rock interlayers [J]. Rock and Soil Mechanics, 2020, 41(9): 3056 − 3065, 3076. (in Chinese)
    [8] Chen Guoxing, Ruan Bin, Zhao Kai, et al. Nonlinear Response Characteristics of undersea shield tunnel subjected to strong earthquake motions [J]. Journal of Earthquake Engineering, 2020, 24(3): 351 − 380. doi: 10.1080/13632469.2018.1453416
    [9] Ruan Bin, Zhao Kai, Wang Suyang, et al. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China) [J]. Engineering Geology, 2019, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
    [10] Chen Guoxing, Wang Yangzhen, Zhao Dingfeng, et al. A new effective stress method for nonlinear site response analyses [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595 − 1611.
    [11] GB18306−2015, 中国地震动参数区划图 [S]. 北京: 中国质检出版社, 2015.

    GB 18306−2015, Seismic ground motion parameters zonation map of Chian [S]. Beijing: China Quality Inspection, 2015. (in Chinese)
    [12] 刘晶波, 谷音, 杜义欣. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070 − 1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    Liu Jingbo, Gu Yin, Du Yixin. Consistent viscous- spring artificial boundaries and viscous-spring boundary elements [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070 − 1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004
    [13] 李述涛, 刘晶波, 宝鑫, 等. 采用粘弹性人工边界单元时显式算法稳定性分析[J]. 工程力学, 2020, 37(11): 1 − 11, 46. doi: 10.6052/j.issn.1000-4750.2019.12.0755

    Li Shutao, Liu Jingbo, Bao Xin, et al. Stability analysis of explicit integration algorithm with viscoelastic artificial boundary elements [J]. Engineering Mechanics, 2020, 37(11): 1 − 11, 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0755
    [14] Miao Yu, Yao Erlei, Ruan Bin, et al. Seismic response of shield tunnel subjected to spatially varying earthquake ground motions [J]. Tunneling and Underground Space Technology, 2018, 77: 216 − 226. doi: 10.1016/j.tust.2018.04.006
    [15] Li Furong, Chen Guoxing, Arkady Serikov. Nonlinear seismic response characteristics of CAP1400 nuclear island structure on soft rock sites [J]. Science and Technology of Nuclear Installations, 2020, 4: 1 − 17.
    [16] 朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129 − 142. doi: 10.6052/j.issn.1000-4750.2020.02.0121

    Zhu Shengdong, Chen Guoxing, Jiang Pengcheng, et al. 3D nonlinear response characteristics of pile-raft- supported AP1000 nuclear island building in soft deposits subjected to strong ground motions [J]. Engineering Mechanics, 2021, 38(1): 129 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0121
    [17] Hashash Y M A, Groholski D R, Philips C A, et al. DEEPSOIL V6.0, User manual and tutorial [R]. Urbana, Illinois: Board of Trustees of University of Illinois at Urbana- Champaign, 2014.
    [18] Boore D M, Smith C E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California [J]. Bulletin of the Seismological Society of America, 1999, 89(1): 260 − 274. doi: 10.1785/BSSA0890010260
    [19] Li C, Hao H, Li H N, et al. Theoretical modeling and numerical simulation of seismic motions at seafloor [J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 220 − 225. doi: 10.1016/j.soildyn.2015.05.016
    [20] Nakamura. What is the Nakamura method [J]. Seismological Research Letters, 2019, 90(4): 1437 − 1443.
    [21] 陈国兴, 丁杰发, 方怡, 等. 场地类别分类方案研究[J]. 岩土力学, 2020, 41(11): 3510 − 3522, 3582.

    Chen Guoxing, Ding Jiefa, Fang Yi, et al. Investigation of seismic site classification method [J]. Rock and Soil Mechanics, 2020, 41(11): 3510 − 3522, 3582. (in Chinese)
    [22] 袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95 − 102, 122.

    Yuan Xiaoming, Li Ruishan, Sun Rui. A new generation method for earthquake response analysis of soil layers [J]. China Civil Engineering Journal, 2016, 49(10): 95 − 102, 122. (in Chinese)
    [23] 王彦臻, 赵丁凤, 陈国兴, 等. 一维场地地震反应非线性有效应力分析法及其验证[J]. 岩土工程学报, 2021, 43(3): 502 − 510.

    Wang Yanzhen, Zhao Dingfeng, Chen Guoxing, et al. A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 502 − 510. (in Chinese)
    [24] Montgomery J, Boulanger R W. Effects of spatial variability on liquefaction-induced settlement and lateral spreading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 1 − 15.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  72
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 修回日期:  2021-05-20
  • 网络出版日期:  2021-06-19
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回