留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含多裂纹损伤圆弧曲梁自由振动扰动的有限元网格自适应分析

王永亮 王建辉 张磊

王永亮, 王建辉, 张磊. 含多裂纹损伤圆弧曲梁自由振动扰动的有限元网格自适应分析[J]. 工程力学, 2021, 38(10): 24-33. doi: 10.6052/j.issn.1000-4750.2020.10.0708
引用本文: 王永亮, 王建辉, 张磊. 含多裂纹损伤圆弧曲梁自由振动扰动的有限元网格自适应分析[J]. 工程力学, 2021, 38(10): 24-33. doi: 10.6052/j.issn.1000-4750.2020.10.0708
WANG Yong-liang, WANG Jian-hui, ZHANG Lei. ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS[J]. Engineering Mechanics, 2021, 38(10): 24-33. doi: 10.6052/j.issn.1000-4750.2020.10.0708
Citation: WANG Yong-liang, WANG Jian-hui, ZHANG Lei. ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS[J]. Engineering Mechanics, 2021, 38(10): 24-33. doi: 10.6052/j.issn.1000-4750.2020.10.0708

含多裂纹损伤圆弧曲梁自由振动扰动的有限元网格自适应分析

doi: 10.6052/j.issn.1000-4750.2020.10.0708
基金项目: 国家自然科学基金项目(41877275,51608301);中央高校基本科研业务费专项资金项目(2019QL02);天津市重点实验室开放课题基金项目(2017SCEEKL003);中国矿业大学(北京)越崎青年学者计划项目(2019QN14);大学生创新创业训练计划项目(C201906327,C202006976)
详细信息
    作者简介:

    王建辉(1997−),男,河北石家庄人,硕士生,主要从事矿山岩体计算力学的研究(E-mail: wangjianhui@students.cumtb.edu.cn)

    张 磊(1998−),男,河北廊坊人,本科生,主要从事矿山岩体计算力学的研究(E-mail: zhanglei@students.cumtb.edu.cn)

    通讯作者:

    王永亮(1985−),男,河北唐山人,副教授,博士,硕导,主要从事矿山岩体计算力学的研究(E-mail: wangyl@cumtb.edu.cn)

  • 中图分类号: O242.21

ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS

  • 摘要: 该文建立圆弧形曲梁裂纹的截面损伤缺陷比拟方案,实施微裂纹损伤诱发截面弱化,实现多裂纹深度、位置、数目的模拟。引入变截面Timoshenko梁的h型有限元网格自适应分析方法,求解含裂纹损伤圆弧曲梁自由振动问题,得到优化的网格和满足预设误差限的高精度自振频率和振型解答,研究多裂纹损伤对圆弧曲梁振型的扰动行为。数值算例表明,该算法中网格非均匀加密可适应裂纹损伤引起的振型变化,应用于各类曲梁夹角和裂纹损伤分布工况下的自由振动研究,定量分析了多裂纹损伤深度、数目、分布对圆弧曲梁自振频率和振型的扰动影响,检验了该文算法的精确性和实用性。
  • 图  1  含裂纹损伤曲梁坐标系和符号

    Figure  1.  Coordinate systems and symbols of cracked curved beam

    图  2  无裂纹损伤1/4圆弧曲梁模型

    Figure  2.  Model of a quarter of uncracked circularly curved beam

    图  3  裂纹损伤1/4圆弧曲梁振型

    Figure  3.  Vibration modes of a quarter of uncracked circularly curved beam

    图  4  单裂纹损伤曲梁不同裂纹深度(α=0.0、0.16、0.5,β=0. 6125)模型

    Figure  4.  Model of curved beam with single crack in different depth cases (α=0.0, 0.16, 0.5, β =0.6125)

    图  5  裂纹深度对自振频率扰动影响

    Figure  5.  Disturbance influence of crack depth on natural frequencies

    图  6  单裂纹损伤曲梁裂纹深度α=0.5下振型

    Figure  6.  Vibration modes of curved beam with single crack in depth case α=0.5

    图  7  单裂纹损伤曲梁裂纹深度α=0.16下振型扰动

    Figure  7.  Vibration modes disturbance of curved beam with single crack in depth case α=0.16

    图  8  单裂纹损伤曲梁裂纹深度α=0.5下振型扰动

    Figure  8.  Vibration modes disturbance of curved beam with single crack in depth case α=0.5

    图  9  多裂纹损伤曲梁不同裂纹数目(n=2、3、4)模型

    Figure  9.  Model of curved beam with multiple cracks in different number cases (n=2, 3, 4)

    图  10  裂纹数目对自振频率扰动影响

    Figure  10.  Disturbance influence of crack number on natural frequencies

    图  11  多裂纹损伤曲梁不同裂纹数目振型扰动

    Figure  11.  Vibration modes disturbance of curved beam with multiple cracks in different number cases

    图  12  多裂纹损伤曲梁不同裂纹分布模型

    Figure  12.  Model of curved beam with multiple cracks in different distribution cases

    图  13  裂纹分布对自振频率扰动影响

    Figure  13.  Disturbance influence of crack distribution on natural frequencies

    图  14  多裂纹损伤曲梁不同裂纹分布振型扰动

    Figure  14.  Vibration modes disturbance of curved beam with multiple cracks in different distribution cases

    表  1  无裂纹损伤1/4圆弧曲梁自振频率值

    Table  1.   Natural frequencies of a quarter of uncracked circularly curved beam

    阶次k频率值单元数误差/(×10−6)
    $\omega _k^{\rm{h}}$$\omega _k^{\rm{h}}$[29]
    11.641 294 011.641 294 00200.004
    21.894 921 531.894 920 42200.383
    32.888 817 912.888 817 87280.010
    43.929 098 423.929 098 42320.205
    54.462 234 014.462 234 00320.002
    下载: 导出CSV

    表  2  单裂纹损伤曲梁不同裂纹深度自振频率值

    Table  2.   Natural frequencies of curved beam with single crack in different depth cases

    阶次k频率值(α=0.0)误差/(×10−2)频率值(α=0.16)误差/(×10−2)频率值(α=0.5)误差/(×10−2)
    $\omega _{0.0,k}^{\rm{h}}$$\omega _{0.0,k}^{\rm{h}}$[14]$\omega _{0.0,k}^{\rm{h}}$[6]$\omega _{0.16,k}^{\rm{h}}$$\omega _{0.16,k}^{\rm{h}}$[14]$\omega _{0.16,k}^{\rm{h}}$[6]$\omega _{0.5,k}^{\rm{h}}$$\omega _{0.5,k}^{\rm{h}}$[14]$\omega _{0.5,k}^{\rm{h}}$[6]
    124.4450624.4524.520.0224.4272524.4424.480.0524.2146824.3424.320.49
    261.6978861.7361.780.0561.6778861.7261.720.0761.3552761.6861.600.52
    3119.07079119.19118.050.10118.83333119.16117.760.27116.41556118.27116.431.55
    4188.20437188.51184.110.16188.20171188.49184.030.15188.10660188.09183.810.88
    5277.18047277.87269.020.25276.75348277.85268.240.39272.57374277.25267.941.68
    下载: 导出CSV

    表  3  多裂纹损伤数目和位置工况

    Table  3.   Number and location of multiple cracks damage

    工况裂纹数目n裂纹位置β
    20.3333、0.6667
    30.2500、0.5000、0.7500
    40.2000、0.4000、0.6000、0.8000
    下载: 导出CSV

    表  4  多裂纹损伤曲梁不同裂纹数目自振频率值

    Table  4.   Natural frequencies of curved beam with multiple cracks in different number cases

    阶次k频率值
    $\omega _k^{\rm{h}}$,n=2$\omega _k^{\rm{h}}$,n=3$\omega _k^{\rm{h}}$,n=4
    148.535 332 1347.902 077 5847.343 023 95
    2153.660 750 2146.651 275 1144.728 906 6
    3299.120 913 1310.041 195 0292.354 186 0
    4489.649 892 8482.873 507 0505.824 971 0
    5751.539 627 1719.674 070 5712.041 973 3
    102545.139 009 02515.668 639 02502.870 283 0
    207706.363 308 07603.176 785 07520.409 513 0
    3016 025.943 200 016 158.552 250 016 094.761 810 0
    4026 133.888 910 026 108.549 720 026 050.598 210 0
    5038 202.443 860 037 858.824 340 037 728.935 150 0
    下载: 导出CSV

    表  5  多裂纹损伤曲梁不同裂纹分布自振频率值

    Table  5.   Natural frequencies of curved beam with multiple cracks in different distribution cases

    阶次k频率值
    $\omega _{{\rm{u}}k}^h$多裂纹
    均匀分布
    $\omega _{{\rm{c}}k}^h$多裂纹
    左侧集中分布
    频率差
    $\omega _{{\rm{c}}k}^h - \omega _{{\rm{u}}k}^h$
    146.808 799 6747.106 856 430.298 06
    2143.036 785 3144.704 910 701.668 13
    3288.869 077 2290.343 790 101.474 71
    4471.643 268 9477.601 844 005.958 58
    5751.792 226 0703.902 905 80−47.889 32
    102461.536 651 02513.568 991 0052.032 34
    207578.276 595 07536.887 673 00−41.388 92
    3016 051.321 530 016 049.900 190 00−1.421 34
    4026 044.720 800 025 984.653 450 00−60.067 35
    5037 833.740 600 037 557.169 530 00−276.571 07
    下载: 导出CSV
  • [1] Wu J S. Analytical methods and finite element method for free vibration analyses of circularly curved beams [M]. Hoboken, US: John Wiley and Sons (Singapore), Pte Ltd, 2015.
    [2] Oviedo-Tolentino F, Pérez-Gutiérrez F, Romero-Méndez R, et al. Vortex-induced vibration of a bottom fixed flexible circular beam [J]. Ocean Engineering, 2014, 88: 463 − 471. doi: 10.1016/j.oceaneng.2014.07.012
    [3] Fam A, Rizkalla S. Large scale testing and analysis of hybrid concrete/composite tubes for circular beam-column applications [J]. Construction and Building Materials, 2003, 17(6/7): 507 − 516.
    [4] Yang J, Chen Y. Free vibration and buckling analyses of functionally graded beams with edge cracks [J]. Composite Structures, 2008, 83(1): 48 − 60. doi: 10.1016/j.compstruct.2007.03.006
    [5] Piovan M T, Domini S, Ramirez J M. In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams [J]. Composite Structures, 2012, 94(11): 3194 − 3206. doi: 10.1016/j.compstruct.2012.04.032
    [6] Cerri M N, Dilena M, Ruta G C. Vibration and damage detection in undamaged and cracked circular arches: Experimental and analytical results [J]. Journal of Sound and Vibration, 2008, 314(1/2): 83 − 94.
    [7] Lee J W. Crack identification method for tapered cantilever pipe-type beam using natural frequencies [J]. International Journal of Steel Structures, 2016, 16(2): 467 − 476. doi: 10.1007/s13296-016-6017-x
    [8] Rizos P F, Aspragathos N, Dimarogonas A D. Identification of crack location and magnitude in a cantilever beam from the vibration modes [J]. Journal of Sound and Vibration, 1990, 138(3): 381 − 388. doi: 10.1016/0022-460X(90)90593-O
    [9] Fan W, Qiao P. Vibration-based damage identification methods: A review and comparative study [J]. Structural Health Monitoring, 2011, 10(1): 83 − 111. doi: 10.1177/1475921710365419
    [10] Yang Y, Yang J. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles [J]. International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850025. doi: 10.1142/S0219455418500256
    [11] Duan Y, Wang J, Wang J, et al. Theoretical and experimental study on the transverse vibration properties of an axially moving nested cantilever beam [J]. Journal of Sound and Vibration, 2014, 333(13): 2885 − 2897. doi: 10.1016/j.jsv.2014.02.021
    [12] Jaworski J W, Dowell E H. Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment [J]. Journal of Sound and Vibration, 2008, 312(4/5): 713 − 725.
    [13] Palash D, Talukdar S. Modal characteristics of cracked thin walled unsymmetrical cross-sectional steel beams curved in plan [J]. Thin Walled Structures, 2016, 108: 75 − 92. doi: 10.1016/j.tws.2016.08.006
    [14] Karaagac C, Ozturk H, Sabuncu M. Crack effects on the in-plane static and dynamic stabilities of a curved beam with an edge crack [J]. Journal of Sound and Vibration, 2011, 330(8): 1718 − 1736. doi: 10.1016/j.jsv.2010.10.033
    [15] Bovsunovskii O A. A finite-element model for the study of vibration of a beam with a closing crack [J]. Strength of Materials, 2008, 40(5): 584 − 589. doi: 10.1007/s11223-008-9072-5
    [16] Melenk J M, Wohlmuth B I. On residual-based a posteriori error estimation in hp-FEM [J]. Advances in Computational Mathematics, 2001, 15(1/2/3/4): 311 − 331.
    [17] Yuan S, Wang Y, Ye K. An adaptive FEM for buckling analysis of non-uniform Bernoulli-Euler members via the element energy projection technique [J]. Mathematical Problems in Engineering, 2013, 40(7): 221 − 239.
    [18] Wang Y. An h-version adaptive FEM for eigenproblems in system of second order ODEs: Vector Sturm-Liouville problems and free vibration of curved beams [J]. Engineering Computations, 2020, 37(1): 1210 − 1225.
    [19] 王永亮. 变截面变曲率梁振型的有限元超收敛拼片恢复解和网格自适应分析[J]. 工程力学, 2020, 37(12): 1 − 8. doi: 10.6052/j.issn.1000-4750.2020.02.0065

    Wang Yongliang. Superconvergent patch recovery solutions and adaptive mesh refinement analysis of finite element method for the vibration modes of non-uniform and variable curvature beams [J]. Engineering Mechanics, 2020, 37(12): 1 − 8. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0065
    [20] 袁驷, 王永亮, 徐俊杰. 二维自由振动的有限元线法自适应分析新进展[J]. 工程力学, 2014, 31(1): 15 − 22. doi: 10.6052/j.issn.1000-4750.2013.05.ST01

    Yuan Si, Wang Yongliang, Xu Junjie. New progress in self-adaptive FEMOL analysis of 2D free vibration problems [J]. Engineering Mechanics, 2014, 31(1): 15 − 22. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.ST01
    [21] Wang Y, Ju Y, Zhuang Z, et al. Adaptive finite element analysis for damage detection of non–uniform Euler–Bernoulli beams with multiple cracks based on natural frequencies [J]. Engineering Computations, 2017, 35(3): 1203 − 1229.
    [22] 王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021, 38(2): 8 − 15. doi: 10.6052/j.issn.1000-4750.2020.03.0173

    Wang Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of circularly cracked curved beams [J]. Engineering Mechanics, 2021, 38(2): 8 − 15. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0173
    [23] 王永亮, 鞠杨, 陈佳亮, 等. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17 − 25, 36. doi: 10.6052/j.issn.1000-4750.2017.06.0421

    Wang Yongliang, Ju Yang, Chen Jialiang, et al. Adaptive finite element-discrete element algorithm, software ELFEN and application in stimulated reservoir volume of shale [J]. Engineering Mechanics, 2018, 35(9): 17 − 25, 36. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0421
    [24] Friedman Z, Kosmatka J B. An accurate two-node finite element for shear deformable curved beams [J]. International Journal for Numerical Methods in Engineering, 1998, 41: 473 − 498. doi: 10.1002/(SICI)1097-0207(19980215)41:3<473::AID-NME294>3.0.CO;2-Q
    [25] Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: its basis and fundamentals [M]. 7th ed. Oxford, UK: Elsevier (Singapore), Pte Ltd, 2015.
    [26] Wiberg N E, Bausys R, Hager P. Adaptive h-version eigenfrequency analysis [J]. Computers and Structures, 1999, 71(5): 565 − 584. doi: 10.1016/S0045-7949(98)00235-1
    [27] Wiberg N E, Bausys R, Hager P. Improved eigenfrequencies and eigenmodes in free vibration analysis [J]. Computers and Structures, 1999, 73(1/2/3/4/5): 79 − 89.
    [28] Clough R W, Penzien J. Dynamics of structures [M]. 2nd ed. New York: McGraw-Hill, 1993.
    [29] 袁驷, 叶康生, 王珂. 平面曲梁面内自由振动分析的自适应有限元法[J]. 工程力学, 2009, 26(增刊 2): 126 − 132.

    Yuan Si, Ye Kangsheng, Wang Ke. A self-adaptive fem for free vibration analysis of planar curved beams with variable cross-sections [J]. Engineering Mechanics, 2009, 26(Suppl 2): 126 − 132. (in Chinese)
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  146
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-04
  • 修回日期:  2020-12-17
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回