DYNAMIC RESPONSE ANALYSIS OF SUBMERGED FLOATING TUNNELS TO COUPLED WAVE-SEISMIC ACTION
-
摘要: 为了分析波浪地震耦合作用下悬浮隧道的动力响应,通过Stokes波浪理论和三角级数法计算了波浪荷载和地震荷载,基于D’Alembert原理建立了波浪地震耦合作用下悬浮隧道的管体-锚索模型。结合悬浮隧道待建工程对荷载参数和系统响应进行分析,结果表明:波浪地震耦合作用下悬浮隧道管体-锚索模型与锚索振动模型具有较好的一致性,但后者无法考虑系统的参数振动;地震的方向对悬浮隧道系统的响应具有显著影响,相同地震峰值加速度下水平地震作用所产生系统的响应要大于竖向地震作用,且锚索的响应大于管体;地震的峰值加速度与系统响应之间具有一定的函数关系,随地震荷载峰值加速度的增加系统的最大位移响应约呈线性增加趋势;在地震荷载的基础上考虑波浪荷载后系统的响应有所增大。随波浪波高和波长增加系统响应约呈线性增大,且较小波浪的周期(小于10 s)易引发系统的共振。Abstract: To investigate the dynamic response of submerged floating tunnels (SFT) subject to the coupled action of earthquakes and waves, the wave load and seismic load were calculated by the Stokes wave theory and trigonometric series method, and the tube-tether model of SFT under the wave-seismic action was established based on the D’ Alembert principle. Combined with a planned SFT project, the load parameters and the response of the SFT system were analyzed. The results show that the tube-tether model was in good agreement with the tether vibration model under the coupled action of earthquakes and waves. However, the latter could not consider the parameter vibration of the system. The earthquake direction had a significant influence on the response of the SFT system. Under the same peak ground acceleration (PGA), the response of the system to the horizontal earthquake action was greater than that to the vertical earthquake action, and the response of the tethers was greater than that of the tube. There was a certain relationship between the PGA and the response of the system. The maximum displacement of the system increased linearly with the increase of the PGA. Based on the seismic load, the response of the system was increased by considering the wave load. With the increase of the wave height and wavelength, the response of the system increased linearly. Waves of small periods (less than 10 s) were easy to cause resonance of the system.
-
Key words:
- tunnel engineering /
- submerged floating tunnel /
- wave load /
- seismic load /
- dynamic analysis
-
表 1 悬浮隧道系统基本参数
Table 1. Primary parameters of SFT system
对象 参数 数值 管体 长度l/m 500 外径D/m 15 厚度Ω/m 1 弹性模量Etb/GPa 35 单位长度质量mtb/(kg/m) 1.5×105 锚索 长度li/m 160 直径di/m 0.346 单位长度质量mi/(kg/m) 1474.23 弹性模量Ei/GPa 210 倾角αi/(°) 60 初张力Ti/kN 2×104 锚索间距h/m 125 波浪 波高H/m 2.83 波长L/m 78 周期T/s 7.76 地震 峰值加速度PGA/(m/s2) 0.5 g 持续时间Td/s 40 场地类别 A 表 2 天然地震波参数
Table 2. Parameters of natural earthquakes
序号 1 2 3 地震名 Helena Montana-01 Imperial Valley-02 Humbolt Bay 时间/年 1935 1940 1937 台站 Carroll College El Centro Array #9 Ferndale City Hall 震级 6.6 6.95 7.36 震中距/km 6 6.9 5.8 场地类别 C D D -
[1] Remseth S, Leira B J, Okstad K M, et al. Dynamic response and fluid/structure interaction of submerged floating tunnels [J]. Computers & Structures, 1999, 72(5): 659 − 685. [2] 项贻强, 陈政阳, 杨赢. 悬浮隧道动力响应分析方法及模拟的研究进展[J]. 中国公路学报, 2017, 30(1): 69 − 76. doi: 10.3969/j.issn.1001-7372.2017.01.009Xiang Yiqiang, Chen Zhengyang, Yang Ying. Research development of method and Simulation for Analyzing Dynamic Response of Submerged Floating Tunnel [J]. China Journal of Highway and Transport, 2017, 30(1): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.01.009 [3] Sha Y, Amdahl, Jørgen, et al. Local and global responses of a floating bridge under ship-girder collisions [J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 141(3): 031601.1 − 031601.12. [4] Østlid H. When is SFT competitive? [J]. Procedia Engineering, 2010, 4: 3 − 11. doi: 10.1016/j.proeng.2010.08.003 [5] Martinelli L, Domaneschi M, Shi C. Submerged floating tunnels under seismic motion: vibration mitigation and seaquake effects [J]. Procedia Engineering, 2016, 166: 229 − 246. doi: 10.1016/j.proeng.2016.11.546 [6] Xiang Y, Liu C, Zhang K, et al. Risk analysis and management of submerged floating tunnel and its application [J]. Procedia Engineering, 2010, 4: 107 − 116. doi: 10.1016/j.proeng.2010.08.013 [7] Kanie S. Feasibility studies on various SFT in Japan and their technological evaluation [J]. Procedia Engineering, 2010, 4: 13 − 20. doi: 10.1016/j.proeng.2010.08.004 [8] Seo S, Sagong M, Son S. Global response of submerged floating tunnel against underwater explosion [J]. KSCE Journal of Civil Engineering, 2015, 19(7): 2029 − 2034. doi: 10.1007/s12205-015-0136-3 [9] 项贻强, 张科乾. 基于Morison 方程分层积分计算悬浮隧道的波浪力[J]. 浙江大学学报(工学版), 2011, 45(8): 1399 − 1404. doi: 10.3785/j.issn.1008-973X.2011.08.012Xiang Yiqiang, Zhang Keqian. The layered integrating method for calculating wave force of submerged floating tunnel based on Morison equation [J]. Journal of Zhejiang University (Engineering Science), 2011, 45(8): 1399 − 1404. (in Chinese) doi: 10.3785/j.issn.1008-973X.2011.08.012 [10] 葛斐, 惠磊, 洪友士. 波浪场中水中悬浮隧道动力响应的研究[J]. 工程力学, 2008, 25(6): 188 − 194.Ge Fei, Hui Lei, Hong Youshi. Research on dynamic response of submerged floating tunnel to regular wave forces [J]. Engineering Mechanics, 2008, 25(6): 188 − 194. (in Chinese) [11] 葛斐, 董满生, 惠磊, 等. 水中悬浮隧道锚索在波流场中的涡激动力响应[J]. 工程力学, 2006, 23(增刊 1): 217 − 221.Ge Fei, Dong Mansheng, Hui Lei, et al. Vortex-induced vibration of submerged floating tunnel tethers under wave and current effects [J]. Engineering Mechanics, 2006, 23(Suppl 1): 217 − 221. (in Chinese) [12] 麦继婷, 杨显成, 关宝树. 波流作用下悬浮隧道的动态响应分析[J]. 水动力学研究与进展, 2005, 20(5): 616 − 623.Mai Jiting, Yang Xiancheng, Guan Baoshu. Dynamic response analysis of the submerged floating tunnel subiected to the wave and current [J]. Journal of Hydrodynamics, 2005, 20(5): 616 − 623. (in Chinese) [13] In Yeol Paik, Chang Kook Oh, Jang Sub Kwon, et al. Analysis of wave force induced dynamic response of submerged floating tunnel [J]. KSCE Journal of Civil Engineering, 2004, 8(5): 56 − 63. [14] Wu Z W, Liu J K, Liu Z Q, et al. Nonlinear wave forces on large-scale submerged tunnel element [J]. Marine Structures, 2016, 45: 133 − 156. doi: 10.1016/j.marstruc.2015.10.008 [15] Kunisu H. Evaluation of wave force acting on submerged floating tunnels [J]. Procedia Engineering, 2010, 4: 99 − 105. doi: 10.1016/j.proeng.2010.08.012 [16] Remseth S, Leira B J, Okstad K M, et al. Dynamic response and fluid/structure interaction of submerged floating tunnels [J]. Computers & Structures, 1999, 72(4/5): 659 − 685. [17] Faggiano B, Landolfo R, Mazzolani F M. Design and modelling aspects concerning the submerged floating tunnels: an application to the messina strait crossing [J]. Krobeborg Strait Crossing, 2001: 511 − 519. [18] Dai J, Leira B J, Moan T, et al. Inhomogeneous wave load effects on a long, straight and side-anchored floating pontoon bridge [J]. Marine Structures, 2020, 72: 102763-1 − 102763-24. doi: 10.1016/j.marstruc.2020.102763 [19] Jin R, Gou Y, Geng B, et al. Coupled dynamic analysis for wave action on a tension leg-type submerged floating tunnel in time domain [J]. Ocean Engineering, 2020, 212: 107600-1 − 107600-14. doi: 10.1016/j.oceaneng.2020.107600 [20] Morita S, Yamashita T, Mizuno Y, et al. Earthquake response analysis of submerged floating tunnels considering water compressibility [C]// The Proceedings of the International Offshore and Polar Engineering Conference. Osaka: ISOPE, 1994: 20 − 26. [21] Lee J H, Kim J K. Dynamic response analysis of a floating offshore structure subjected to the hydrodynamic pressures induced from seaquakes [J]. Ocean Engineering, 2015, 101: 25 − 39. doi: 10.1016/j.oceaneng.2015.04.010 [22] Leira B J. First-and second-order wave-induced dynamic response of submerged floating tunnels [C]// Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: American Society of Mechanical Engineers, 2016: 1 − 9. [23] Fogazzi P, Perotti F. The dynamic response of seabed anchored floating tunnels under seismic excitation [J]. Earthquake Engineering and Structural Dynamics, 2000, 29(3): 273 − 295. doi: 10.1002/(SICI)1096-9845(200003)29:3<273::AID-EQE899>3.0.CO;2-Z [24] Jin C, Kim M H. Tunnel-mooring-train coupled dynamic analysis for submerged floating tunnel under wave excitations [J]. Applied Ocean Research, 2020, 94: 102008-1 − 102008-17. doi: 10.1016/j.apor.2019.102008 [25] DiPilato M, Perotti F, Fogazzi P. 3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation [J]. Engineering Structures, 2008, 30(1): 268 − 281. doi: 10.1016/j.engstruct.2007.04.001 [26] Wu Z W, Ni P, Mei G. Vibration response of cable for submerged floating tunnel under simultaneous hydrodynamic force and earthquake excitations [J]. Advances in Structural Engineering, 2018, 21(11): 1761 − 1773. doi: 10.1177/1369433218754545 [27] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风机地震响应的影响 [J]. 工程力学, 2020, 37(11): 58 − 68.Xi Renqiang, Xu Chengshun, Du Xiuli, et al. Effects of wind-wave loadings on the seismic Response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58 − 68. (in Chinese) [28] 何晓宇, 李宏男. 地震与波浪荷载作用下偏心海洋平台扭转耦联参数影响分析[J]. 工程力学, 2009, 26(12): 222 − 228.He XiaoYu, Li Hongnan. Torsionally coupled dynamic analysis of asymmetric offshore platform subjected to wave and earthquake loadings [J]. Engineering Mechanics, 2009, 26(12): 222 − 228. (in Chinese) [29] 孙胜男, 苏志彬, 白卫峰. 轴向激励下悬浮隧道锚索参数振动分析[J]. 工程力学, 2011, 28(6): 170 − 175.Sun Shengnan, Su Zhibin, Bai Weifeng. Parametric vibration analysis of submerged floating tunnel tether caused by axial excitation [J]. Engineering Mechanics, 2011, 28(6): 170 − 175. (in Chinese) [30] 孙胜男, 苏志彬. 随机激励作用下悬浮隧道锚索的振动响应[J]. 工程力学, 2013, 30(3): 476 − 480.Sun Shengnan, Su Zhibin. Vibration response of submerged floating tunnel tether subjected to random excitation [J]. Engineering Mechanics, 2013, 30(3): 476 − 480. (in Chinese) [31] 惠磊, 葛斐, 洪友士. 水中悬浮隧道在冲击载荷作用下的计算模型与数值模拟[J]. 工程力学, 2008, 25(2): 209 − 213.Hui Lei, Ge Fei, Hong Youshi. Calculation model and numerical simulation of submerged floating tunnel subjected to impact loading [J]. Engineering Mechanics, 2008, 25(2): 209 − 213. (in Chinese) [32] 陈健云, 王变革, 孙胜男. 悬浮隧道锚索的涡激动力响应分析[J]. 工程力学, 2007, 24(10): 186 − 192. doi: 10.3969/j.issn.1000-4750.2007.10.033Chen Jianyun, Wang Biange, Sun Shengnan. Analysis of vortex-induced dynamic response for the anchor cable of submerged floating tunnel [J]. Engineering Mechanics, 2007, 24(10): 186 − 192. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.10.033 [33] 陈健云, 孙胜男, 苏志彬. 水流作用下悬浮隧道锚索的动力响应[J]. 工程力学, 2008(10): 237 − 242.Chen Jianyun, Sun Shengnan, Su Zhibin. Dynamic response of submerged floating-tunnel tethers subjected to current [J]. Engineering Mechanics, 2008(10): 237 − 242. (in Chinese) [34] Lin H, Xiang Y Q, Yang Y S. Vehicle-tunnel coupled vibration analysis of submerged floating tunnel due to tether parametric excitation [J]. Marine Structures, 2019, 67: 1 − 14. [35] Martinelli L, Barbella G, Feriani A. A numerical procedure for simulating the multi-support seismic response of submerged floating tunnels anchored by cables [J]. Engineering Structures, 2011, 33(10): 2850 − 2860. doi: 10.1016/j.engstruct.2011.06.009 [36] Bi K, Hao H. Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions [J]. Probabilistic Engineering Mechanics, 2012, 29: 92 − 104. doi: 10.1016/j.probengmech.2011.09.002 [37] ISO 19901-2−2017, Petroleum and natural gas industries-specific requirements for offshore structures—Part 2: Seismic design. procedures and criteria [S]. British: BSI, 2018. [38] 苏成, 黄志坚, 刘小璐. 高层建筑地震作用计算的时域显式随机模拟法[J]. 建筑结构学报, 2015, 36(1): 13 − 22.Su Cheng, Huang Zhijian, Liu Xiaolu. Time-domain explicit random simulation method for seismic analysis of tall buildings [J]. Journal of Building Structures, 2015, 36(1): 13 − 22. (in Chinese) [39] Lee J H, Seo S I, Mun H S. Seismic behaviors of a floating submerged tunnel with a rectangular cross-section [J]. Ocean Engineering, 2016, 127: 32 − 47. doi: 10.1016/j.oceaneng.2016.09.033 [40] Sato M, Kanie S, Mikami T. Structural modeling of beams on elastic foundations with elasticity couplings [J]. Mechanics Research Communications, 2007, 34(5/6): 451 − 459. doi: 10.1016/j.mechrescom.2007.04.001 [41] Su Z B, Sun S N. Seismic response of submerged floating tunnel tether [J]. China Ocean Engineering, 2013, 27(1): 43 − 50. doi: 10.1007/s13344-013-0004-1 [42] 孙胜男. 悬浮隧道动力响应分析 [D]. 大连: 大连理工大学, 2008.Sun Shengnan. Dynamic response analysis of submerged floating tunnel [D]. Dalian: Dalian University of Technology, 2008. [43] Tagata G. Harmonically forced, finite amplitude vibration of a string [J]. Journal of Sound and Vibration, 1977, 51(4): 483 − 492. doi: 10.1016/S0022-460X(77)80046-1 -