STUDIES ON THE BOND PERFORMANCE OF FRP-TO-CONCRETE INTERFACES UNDER ENVIRONMENTAL TEMPERATURE DIFFERENCE
-
摘要: 为明确环境温差对纤维增强聚合物(FRP)加固混凝土构件的界面粘结性能的影响,基于粘结界面的双参数内聚力指数模型,建立了FRP-混凝土粘结结点在温差作用下的界面微分平衡方程,采用边界条件叠加的方法,解析推导了界面相对滑移、界面剪应力和FRP应力-应变分布计算公式。基于解析理论模型,提出了FRP-混凝土界面最大承载温差的计算方法,分析了粘结长度、温差变化和粘结层数对界面粘结性能的影响。结果表明:该文推导出的理论公式计算结果与界面试验结果吻合良好,建立的解析理论模型能够较好地预测温差作用下FRP-混凝土界面粘结行为;界面最大承载温差随粘结长度的增加存在上限值,且由于界面粘结性能的退化,FRP温度应力的最大值出现在达到界面最大承载温差之前;界面剪应力集中在粘结端部区域,受温差变化和FRP粘结层数影响较大,且当环境温差进入胶黏剂玻璃化转变区域后影响最为明显。该结论可用于强日照和高温车间等大温差环境下桥梁和建筑加固构件的温度应力分析和界面承载力评估。Abstract: To reveal the effect of environmental temperature difference on the interfacial bond behavior of reinforced concrete members strengthened with external bonded fiber reinforcement polymer (FRP) composites, an analytical method for the bond behavior of FRP-to-concrete joints was presented. Based on the cohesive zone model (CZM), a second order differential equilibrium equation was derived. The analytical models of interface slip, bond stress and FRP stress and strain were given by the superposition solution of the boundary condition. Based on the presented theoretical models, the calculation method of the maximum temperature difference that the FRP-to-concrete interface could bear was presented. The effects of the bond length, temperature difference and the number of FRP layers on the interfacial bond behavior was investigated. The results show that the presented theoretical models were in good agreement with the test results. The theoretical models could predict well the bond behavior of FRP-to-concrete interfaces under the temperature difference. When the bond length increased, the maximum temperature difference was increased until reaching an upper limit. With the increase in the environmental temperature, the maximum FRP stress occurred before the maximum temperature difference was reached. The interfacial shear stress was concentrated in the end of the bond interface, which was significantly affected by the temperature difference and the number of FRP bond layers. When the environmental temperature entered the glass transition area of the adhesive, the interfacial shear stress was greatly changed. These results can be helpful to calculate the temperature stress and to assess the interfacial capacity for the strengthened members in bridge or building structures under environmental temperature differences, such as strong sunshine or high temperature environments.
-
表 1 FRP加固混凝土/钢构件的材料基本信息
Table 1. Basic information of test materials of FRP strengthened concrete (steel)
参数 Ef/GPa αf/(×10−6 ℃−1) tf/mm bf/mm Lf/mm Tg/(℃) 文献[12] 372 −1.1 0.165 100 300 180 文献[20] 180 0.3 1.4 20 200 62 参数 Ec(s)/GPa αc(s)/mm tc(s)/mm bc(s)/mm Lc(s)/mm − 文献[12] 34 8.0 100 100 400 − 文献[20] 185 12 5 50 200 − 注:Ef、 Ec(s)分别为FRP和混凝土/钢板的弹模;αf、 αc(s)分别为FRP和混凝土/钢板的线膨胀系数;tf、 tc(s)分别为FRP和混凝土/钢板的厚度;Lf、 Lc(s)分别为FRP和混凝土/钢板的长度; bf、 bc(s)分别为FRP和混凝土/钢板的宽度;Tg为胶黏剂材料的玻璃化转变温度值。 表 2 界面最大承载温差计算过程
Table 2. Calculation process of interface maximum temperature difference
温差ΔT/(℃) A ABL η2,0 η1,0 ΔTmax,L/(℃) ΔT/ΔTmax,L 140 0.0063 9.585 1.109×10−6 0.010 685 4.89>1 150 0.0052 7.740 1.962×10−5 0.025 554 3.69>1 160 0.0041 5.895 3.464×10−4 0.059 411 2.57>1 170 0.0030 3.930 5.958×10−3 0.132 249 1.46>1 174 0.00255 3.150 1.755×10−2 0.170 180 1.03>1 175 0.00244 2.955 2.269×10−2 0.179 163 0.93<1 -
[1] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9): 99 − 104. doi: 10.3969/j.issn.1003-0999.2014.09.013Feng Peng. Development and application of composite in civil engineering [J]. Fiber Reinforced Plastics/Composites, 2014(9): 99 − 104. (in Chinese) doi: 10.3969/j.issn.1003-0999.2014.09.013 [2] 武晓敏, 谢剑, 徐福泉, 齐文. CFRP加固青白石梁受弯性能试验研究[J]. 工程力学, 2015, 32(增刊 1): 215 − 220.Wu Xiaomin, Xie Jian, Xu Fuquan, Qi Wen. Experimental study on flexural behaviors of stone beams strengthened by CFRP [J]. Engineering Mechanics, 2015, 32(Suppl 1): 215 − 220. (in Chinese) [3] 刘静雅, 霍静思, 刘艳芝. CFRP约束高温后混凝土力学性能试验研究[J]. 工程力学, 2017, 34(9): 158 − 166. doi: 10.6052/j.issn.1000-4750.2016.05.0348Liu Jingya, Huo Jingsi, Liu Yanzhi. Experimental study on the mechanical performance of post-fire concrete confined of CFRP sheets [J]. Engineering Mechanics, 2017, 34(9): 158 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0348 [4] 胡克旭, 董坤, 杨耀武. 结构胶黏剂在温度作用下的剪切性能试验研究[J]. 湖南大学学报, 2016, 43(7): 120 − 125.Hu Kexu, Dong Kun, Yang Yaowu. Experimental study on the shear performances of structural adhesives at different temperature [J]. Journal of Hunan University, 2016, 43(7): 120 − 125. (in Chinese) [5] 吴业飞, 陈伟球. 基于内聚力模型的FRP-混凝土粘结强度分析[J]. 工程力学, 2010, 27(7): 113 − 119.Wu Yefei, Chen Weiqiu. Cohesive zone model based on analysis of bond strength between FRP and concrete [J]. Engineering Mechanics, 2010, 27(7): 113 − 119. (in Chinese) [6] Zhou Yingwu, Wu Yufei, Yun Yanchun. Analytical modeling of the bond–slip relationship at FRP-concrete interfaces for adhesively-bonded joints [J]. Composites Part B: Engineering, 2010, 41(6): 423 − 433. doi: 10.1016/j.compositesb.2010.06.004 [7] Gamage J C P H, Wong M B, Al-Mahaidi R. Performance of FRP strengthened concrete members under elevated temperatures [C]// International Institute for FRP in Construction. Hong Kong, 2005: 7 − 9. [8] Gao Wanyang, Teng Jinguang, Dai Jianguo. Effect of temperature variation on the full-range behavior of FRP-to-concrete bonded joints [J]. Journal of Composites for Construction, 2014, 16(6): 671 − 683. [9] Dai Jianguo, Gao Wanyang, Teng Jinguang. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature [J]. Journal of Composites for Construction, 2014, 17(2): 217 − 228. [10] 金岩. 太阳辐射下CFRP加固混凝土箱梁温度场及温度效应研究 [D]. 甘肃: 兰州交通大学, 2015.Jin Yan. Study on solar radiation thermal field and thermal effects on concrete box girders strengthened with CFRP [D]. Gansu: Lanzhou Jiaotong University, 2015. (in Chinese) [11] 丁南宏, 钱永久, 林丽霞. CFRP加固混凝土墩柱温度自应力及参数研究[J]. 铁道学报, 2007, 29(1): 127 − 131. doi: 10.3321/j.issn:1001-8360.2007.01.025Ding Nanhong, Qian Yongjiu, Lin Lixia. Study on temperature self-restrained stress and parameters of the concrete pier column strengthened by CFRP [J]. Journal of the China Railway Society, 2007, 29(1): 127 − 131. (in Chinese) doi: 10.3321/j.issn:1001-8360.2007.01.025 [12] 黄龙男, 李地红, 张东兴, 等. 碳纤维复合材料补强混凝土界面温度应力分析[J]. 材料科学与工艺, 2005, 13(2): 158 − 161. doi: 10.3969/j.issn.1005-0299.2005.02.013Huang Longnan, Li Dihong, Zhang Dongxing, et al. Analysis of the interface temperature stress of CFRP reinforced concrete [J]. Materials Science and Technology, 2005, 13(2): 158 − 161. (in Chinese) doi: 10.3969/j.issn.1005-0299.2005.02.013 [13] Biscaia H C, Chastre C, Silva M A G. Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces [J]. Composites Part B: Engineering, 2013, 50(7): 210 − 223. [14] Gao W Y, Dai J G, Teng J G. Analysis of mode II debonding behavior of fiber-reinforced polymer-to-substrate bonded joints subjected to combined thermal and mechanical loading [J]. Engineering Fracture Mechanics, 2015, 136: 241 − 264. doi: 10.1016/j.engfracmech.2015.02.002 [15] Xu Rongqiao, Liu Cheng. CZM-based debonding simulation of cracked beams strengthened by FRP sheets [J]. Journal of Engineering Mechanics, 2012, 138(2): 210 − 220. doi: 10.1061/(ASCE)EM.1943-7889.0000315 [16] Liu S X, Yuan H, Wu J Y. Full-range mechanical behavior study of FRP-to-concrete interface for pull-pull bonded joints [J]. Composites Part B: Engineering, 2019, 164: 333 − 344. doi: 10.1016/j.compositesb.2018.11.030 [17] Dai J G, Ueda T, Sato Y. Unified analytical approaches for determining shear bond characteristics of FRP-concrete interfaces through pullout tests [J]. Journal of Advanced Concrete Technology, 2006, 4(1): 133–145. [18] 胡克旭, 董坤, 杨耀武. 温度作用对碳纤维-混凝土界面黏结性能的影响[J]. 同济大学学报, 2016, 44(6): 845 − 852.Hu Kexu, Dong Kun, Yang Yaowu. Temperature effect on bond behavior of carbon fiber reinforced polymer to concrete interface [J]. Journal of Tongji University, 2016, 44(6): 845 − 852. (in Chinese) [19] Dong Kun, Hu Kexu. Development of bond strength model for CFRP-to-concrete joints at high temperatures [J]. Composites Part B: Engineering, 2016, 95: 264 − 271. [20] Hugo C. Biscaia, Pedro Ribeiro. A temperature dependent bond-slip model for CFRP-to-steel joints [J]. Composite Structures, 2019, 217: 186 − 205. [21] Dai J, Ueda T, Sato Y. Development of the nonlinear bond stress–slip model of fiber reinforced plastics sheet–concrete interfaces with a simple method [J]. Journal of Composites for Construction, 2005, 9(1): 52 − 62. doi: 10.1061/(ASCE)1090-0268(2005)9:1(52) -