留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境温差下FRP-混凝土界面粘结行为分析

董坤 郝建文 李鹏 郭海燕 杨树桐

董坤, 郝建文, 李鹏, 郭海燕, 杨树桐. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117-126. doi: 10.6052/j.issn.1000-4750.2019.12.0783
引用本文: 董坤, 郝建文, 李鹏, 郭海燕, 杨树桐. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117-126. doi: 10.6052/j.issn.1000-4750.2019.12.0783
DONG Kun, HAO Jian-wen, LI Peng, GUO Hai-yan, YANG Shu-tong. STUDIES ON THE BOND PERFORMANCE OF FRP-TO-CONCRETE INTERFACES UNDER ENVIRONMENTAL TEMPERATURE DIFFERENCE[J]. Engineering Mechanics, 2020, 37(11): 117-126. doi: 10.6052/j.issn.1000-4750.2019.12.0783
Citation: DONG Kun, HAO Jian-wen, LI Peng, GUO Hai-yan, YANG Shu-tong. STUDIES ON THE BOND PERFORMANCE OF FRP-TO-CONCRETE INTERFACES UNDER ENVIRONMENTAL TEMPERATURE DIFFERENCE[J]. Engineering Mechanics, 2020, 37(11): 117-126. doi: 10.6052/j.issn.1000-4750.2019.12.0783

环境温差下FRP-混凝土界面粘结行为分析

doi: 10.6052/j.issn.1000-4750.2019.12.0783
基金项目: 国家自然科学基金项目(51909250);中国博士后科学基金项目(2019M652477);中央高校基本科研业务费项目(841813023)
详细信息
    作者简介:

    董 坤(1987−),男,山东人,讲师,博士,主要从事结构加固与结构防火研究(E-mail: dongkun@ouc.edu.cn)

    郝建文(1995−),男,山东人,硕士生,主要从事纤维复合材料加固结构的性能研究(E-mail: hjwww1717@163.com)

    郭海燕(1959−),女,黑龙江人,教授,博士,主要从事流固耦联振动研究(E-mail: hyguo@ouc.edu.cn)

    杨树桐(1979−),男,山东人,教授,博士,主要从事混凝土断裂与加固理论与试验研究(E-mail: shutongyang2013@163.com)

    通讯作者:

    李 鹏(1989−),男,山东人,讲师,博士,主要从事工程防灾与修复加固研究(E-mail: superlipeng0621@126.com)

  • 中图分类号: TU528;TU599

STUDIES ON THE BOND PERFORMANCE OF FRP-TO-CONCRETE INTERFACES UNDER ENVIRONMENTAL TEMPERATURE DIFFERENCE

  • 摘要: 为明确环境温差对纤维增强聚合物(FRP)加固混凝土构件的界面粘结性能的影响,基于粘结界面的双参数内聚力指数模型,建立了FRP-混凝土粘结结点在温差作用下的界面微分平衡方程,采用边界条件叠加的方法,解析推导了界面相对滑移、界面剪应力和FRP应力-应变分布计算公式。基于解析理论模型,提出了FRP-混凝土界面最大承载温差的计算方法,分析了粘结长度、温差变化和粘结层数对界面粘结性能的影响。结果表明:该文推导出的理论公式计算结果与界面试验结果吻合良好,建立的解析理论模型能够较好地预测温差作用下FRP-混凝土界面粘结行为;界面最大承载温差随粘结长度的增加存在上限值,且由于界面粘结性能的退化,FRP温度应力的最大值出现在达到界面最大承载温差之前;界面剪应力集中在粘结端部区域,受温差变化和FRP粘结层数影响较大,且当环境温差进入胶黏剂玻璃化转变区域后影响最为明显。该结论可用于强日照和高温车间等大温差环境下桥梁和建筑加固构件的温度应力分析和界面承载力评估。
  • 图  1  温差作用下粘结结点形式

    Figure  1.  Bond joint under temperature difference

    图  2  温差作用下微元体变形图

    Figure  2.  Microelement deformation under temperature difference

    图  3  FRP加固混凝土/钢试件示意图

    Figure  3.  FRP strengthened concrete/steel specimen

    图  4  文献[20]中τ-s关系的拟合曲线

    Figure  4.  Fitting curves of τ-s relationship in [20]

    图  5  FRP应变解析值与文献[12]试验值对比

    Figure  5.  Comparison between analytical and test FRP strains in [12]

    图  6  FRP应变解析值与文献[20]试验值对比

    Figure  6.  Comparison between analytical and test FRP strains in [20]

    图  7  解析计算值与试验值关系图

    Figure  7.  Relationship between analytical and test values

    图  8  ABLη1,0η2,0的关系

    Figure  8.  Relationship between ABL and η1,0, η2,0

    图  9  界面剪应力积分值与粘结长度关系

    Figure  9.  Relationship between stress integration and bond length

    图  10  最大承载温差与粘结长度关系曲线

    Figure  10.  Relationship between maximum temperature difference and bond length

    图  11  各物理量分布随温差变化情况

    Figure  11.  Parameter distributions with variation of temperature

    图  12  温差80 ℃、160 ℃下不同粘结层数的影响

    Figure  12.  Effect of number of bond layers at ΔT=80 ℃/160 ℃

    表  1  FRP加固混凝土/钢构件的材料基本信息

    Table  1.   Basic information of test materials of FRP strengthened concrete (steel)

    参数Ef/GPaαf/(×10−6−1)tf/mmbf/mmLf/mmTg/(℃)
    文献[12]372−1.10.165100300180
    文献[20]1800.31.42020062
    参数Ec(s)/GPaαc(s)/mmtc(s)/mmbc(s)/mmLc(s)/mm
    文献[12]348.0100100400
    文献[20]18512550200
    注:EfEc(s)分别为FRP和混凝土/钢板的弹模;αfαc(s)分别为FRP和混凝土/钢板的线膨胀系数;tftc(s)分别为FRP和混凝土/钢板的厚度;LfLc(s)分别为FRP和混凝土/钢板的长度; bfbc(s)分别为FRP和混凝土/钢板的宽度;Tg为胶黏剂材料的玻璃化转变温度值。
    下载: 导出CSV

    表  2  界面最大承载温差计算过程

    Table  2.   Calculation process of interface maximum temperature difference

    温差ΔT/(℃)AABLη2,0η1,0ΔTmax,L/(℃)ΔTTmax,L
    1400.00639.5851.109×10−60.0106854.89>1
    1500.00527.7401.962×10−50.0255543.69>1
    1600.00415.8953.464×10−40.0594112.57>1
    1700.00303.9305.958×10−30.1322491.46>1
    1740.002553.1501.755×10−20.1701801.03>1
    1750.002442.9552.269×10−20.1791630.93<1
    下载: 导出CSV
  • [1] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9): 99 − 104. doi: 10.3969/j.issn.1003-0999.2014.09.013

    Feng Peng. Development and application of composite in civil engineering [J]. Fiber Reinforced Plastics/Composites, 2014(9): 99 − 104. (in Chinese) doi: 10.3969/j.issn.1003-0999.2014.09.013
    [2] 武晓敏, 谢剑, 徐福泉, 齐文. CFRP加固青白石梁受弯性能试验研究[J]. 工程力学, 2015, 32(增刊 1): 215 − 220.

    Wu Xiaomin, Xie Jian, Xu Fuquan, Qi Wen. Experimental study on flexural behaviors of stone beams strengthened by CFRP [J]. Engineering Mechanics, 2015, 32(Suppl 1): 215 − 220. (in Chinese)
    [3] 刘静雅, 霍静思, 刘艳芝. CFRP约束高温后混凝土力学性能试验研究[J]. 工程力学, 2017, 34(9): 158 − 166. doi: 10.6052/j.issn.1000-4750.2016.05.0348

    Liu Jingya, Huo Jingsi, Liu Yanzhi. Experimental study on the mechanical performance of post-fire concrete confined of CFRP sheets [J]. Engineering Mechanics, 2017, 34(9): 158 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0348
    [4] 胡克旭, 董坤, 杨耀武. 结构胶黏剂在温度作用下的剪切性能试验研究[J]. 湖南大学学报, 2016, 43(7): 120 − 125.

    Hu Kexu, Dong Kun, Yang Yaowu. Experimental study on the shear performances of structural adhesives at different temperature [J]. Journal of Hunan University, 2016, 43(7): 120 − 125. (in Chinese)
    [5] 吴业飞, 陈伟球. 基于内聚力模型的FRP-混凝土粘结强度分析[J]. 工程力学, 2010, 27(7): 113 − 119.

    Wu Yefei, Chen Weiqiu. Cohesive zone model based on analysis of bond strength between FRP and concrete [J]. Engineering Mechanics, 2010, 27(7): 113 − 119. (in Chinese)
    [6] Zhou Yingwu, Wu Yufei, Yun Yanchun. Analytical modeling of the bond–slip relationship at FRP-concrete interfaces for adhesively-bonded joints [J]. Composites Part B: Engineering, 2010, 41(6): 423 − 433. doi: 10.1016/j.compositesb.2010.06.004
    [7] Gamage J C P H, Wong M B, Al-Mahaidi R. Performance of FRP strengthened concrete members under elevated temperatures [C]// International Institute for FRP in Construction. Hong Kong, 2005: 7 − 9.
    [8] Gao Wanyang, Teng Jinguang, Dai Jianguo. Effect of temperature variation on the full-range behavior of FRP-to-concrete bonded joints [J]. Journal of Composites for Construction, 2014, 16(6): 671 − 683.
    [9] Dai Jianguo, Gao Wanyang, Teng Jinguang. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature [J]. Journal of Composites for Construction, 2014, 17(2): 217 − 228.
    [10] 金岩. 太阳辐射下CFRP加固混凝土箱梁温度场及温度效应研究 [D]. 甘肃: 兰州交通大学, 2015.

    Jin Yan. Study on solar radiation thermal field and thermal effects on concrete box girders strengthened with CFRP [D]. Gansu: Lanzhou Jiaotong University, 2015. (in Chinese)
    [11] 丁南宏, 钱永久, 林丽霞. CFRP加固混凝土墩柱温度自应力及参数研究[J]. 铁道学报, 2007, 29(1): 127 − 131. doi: 10.3321/j.issn:1001-8360.2007.01.025

    Ding Nanhong, Qian Yongjiu, Lin Lixia. Study on temperature self-restrained stress and parameters of the concrete pier column strengthened by CFRP [J]. Journal of the China Railway Society, 2007, 29(1): 127 − 131. (in Chinese) doi: 10.3321/j.issn:1001-8360.2007.01.025
    [12] 黄龙男, 李地红, 张东兴, 等. 碳纤维复合材料补强混凝土界面温度应力分析[J]. 材料科学与工艺, 2005, 13(2): 158 − 161. doi: 10.3969/j.issn.1005-0299.2005.02.013

    Huang Longnan, Li Dihong, Zhang Dongxing, et al. Analysis of the interface temperature stress of CFRP reinforced concrete [J]. Materials Science and Technology, 2005, 13(2): 158 − 161. (in Chinese) doi: 10.3969/j.issn.1005-0299.2005.02.013
    [13] Biscaia H C, Chastre C, Silva M A G. Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces [J]. Composites Part B: Engineering, 2013, 50(7): 210 − 223.
    [14] Gao W Y, Dai J G, Teng J G. Analysis of mode II debonding behavior of fiber-reinforced polymer-to-substrate bonded joints subjected to combined thermal and mechanical loading [J]. Engineering Fracture Mechanics, 2015, 136: 241 − 264. doi: 10.1016/j.engfracmech.2015.02.002
    [15] Xu Rongqiao, Liu Cheng. CZM-based debonding simulation of cracked beams strengthened by FRP sheets [J]. Journal of Engineering Mechanics, 2012, 138(2): 210 − 220. doi: 10.1061/(ASCE)EM.1943-7889.0000315
    [16] Liu S X, Yuan H, Wu J Y. Full-range mechanical behavior study of FRP-to-concrete interface for pull-pull bonded joints [J]. Composites Part B: Engineering, 2019, 164: 333 − 344. doi: 10.1016/j.compositesb.2018.11.030
    [17] Dai J G, Ueda T, Sato Y. Unified analytical approaches for determining shear bond characteristics of FRP-concrete interfaces through pullout tests [J]. Journal of Advanced Concrete Technology, 2006, 4(1): 133–145.
    [18] 胡克旭, 董坤, 杨耀武. 温度作用对碳纤维-混凝土界面黏结性能的影响[J]. 同济大学学报, 2016, 44(6): 845 − 852.

    Hu Kexu, Dong Kun, Yang Yaowu. Temperature effect on bond behavior of carbon fiber reinforced polymer to concrete interface [J]. Journal of Tongji University, 2016, 44(6): 845 − 852. (in Chinese)
    [19] Dong Kun, Hu Kexu. Development of bond strength model for CFRP-to-concrete joints at high temperatures [J]. Composites Part B: Engineering, 2016, 95: 264 − 271.
    [20] Hugo C. Biscaia, Pedro Ribeiro. A temperature dependent bond-slip model for CFRP-to-steel joints [J]. Composite Structures, 2019, 217: 186 − 205.
    [21] Dai J, Ueda T, Sato Y. Development of the nonlinear bond stress–slip model of fiber reinforced plastics sheet–concrete interfaces with a simple method [J]. Journal of Composites for Construction, 2005, 9(1): 52 − 62. doi: 10.1061/(ASCE)1090-0268(2005)9:1(52)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  90
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-25
  • 修回日期:  2020-03-21
  • 网络出版日期:  2022-01-07
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回