基于BP-RBF神经网络的地下连续墙变形预测

徐炳伟;姜忻良

徐炳伟;姜忻良. 基于BP-RBF神经网络的地下连续墙变形预测[J]. 工程力学, 2009, 26(增刊Ⅰ): 163-166.
引用本文: 徐炳伟;姜忻良. 基于BP-RBF神经网络的地下连续墙变形预测[J]. 工程力学, 2009, 26(增刊Ⅰ): 163-166.
XU Bing-wei;JIANG Xin-liang. DIAPHRAGM WALL’S DEFORMATION FORECASTING BASED ON BP-RBF NEURAL NETWORKS[J]. Engineering Mechanics, 2009, 26(增刊Ⅰ): 163-166.
Citation: XU Bing-wei;JIANG Xin-liang. DIAPHRAGM WALL’S DEFORMATION FORECASTING BASED ON BP-RBF NEURAL NETWORKS[J]. Engineering Mechanics, 2009, 26(增刊Ⅰ): 163-166.

基于BP-RBF神经网络的地下连续墙变形预测

详细信息
  • 中图分类号: TU476+.3; TU473

DIAPHRAGM WALL’S DEFORMATION FORECASTING BASED ON BP-RBF NEURAL NETWORKS

  • 摘要: 采用神经网络对地下连续墙变形进行预测,提取出影响地下连续墙变形的5个主要参数:土的粘聚力C、内摩擦角、地下连续墙高度H、基坑开挖深度H1和测点深度h作为神经网络模型输入,建立了BP神经网络与RBF神经网络相结合的BP-RBF预测模型,与单纯的BP神经网络模型相比,具有提高训练效率,简化网络结构的特点,且预测精度满足工程需要。
    Abstract: A artificial neural network is adopted to forecast diaphragm wall’s deformations. Five parameters, the soil’s cohesion C, the soil’s internal friction angle , the wall’s height H, the excavation depth H1 and the survey point’s depth h, governing diaphragm wall’s deformation are abstracted and taken as inputs of the artificial neural network model. A new hybrid neural network model, BP-RBF Neural Network Model is established by combining the traditional BP and RBF neural network. This new neural network model shows great superiority in higher efficiency and a simpler network structure compared with the traditional pure BP neural network model, at the same time the forecasting accuracy is ensured.
计量
  • 文章访问数:  1331
  • HTML全文浏览量:  23
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 刊出日期:  2009-10-31

目录

    XU Bing-wei;JIANG Xin-liang

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回