基于BP神经网络的地聚物混凝土细观参数标定研究

RESEARCH ON MESOSCOPIC PARAMETERS CALIBRATION OF GEOPOLYMER CONCRETE UPON BP NEURAL NETWORK

  • 摘要: 该文提出了一种基于BP神经网络的地聚物混凝土细观参数的标定方法。通过对BP神经网络模型的训练,建立了地聚物混凝土宏、细观参数之间的非线性映射关系。基于BP神经网络,对地聚物混凝土的细观参数进行了预测,并采用预测的细观参数在颗粒流软件中进行数值试验。通过对比试验方法和预测方法得到的地聚物混凝土宏观参数,验证了预测方法的准确性。结果表明:基于BP神经网络预测地聚物混凝土的细观参数具有优异的准确性,其相对误差在10%以内。此外,试验方法测定的宏观力学参数与预测的结果有较高程度的吻合,验证了该方法的标定效果。

     

    Abstract: This research proposes a calibration method for mesoscopic parameters of geopolymer concrete based on the Back Propagation (BP) neural network. The nonlinear mapping relationship between macroscopic and mesoscopic parameters of geopolymer concrete was established by training the BP neural network model. The mesoscopic parameters of geopolymer concrete were predicted upon BP neural network and the predicted mesoscopic parameters were used in the particle flow code numerical simulation. The accuracy of the prediction method was verified by comparing the macroscopic mechanical parameters predicted by the numerical simulated method and by the experimental method. The research results show that the prediction of macroscopic mechanical parameters of geopolymer concrete based on BP neural network has good accuracy, and that the relative error is less than 10%. The results also show that the predicted macroscopic parameters agree well with the experimental results, which verifies the calibration effect of this method.

     

/

返回文章
返回