管俊峰, 鲁猛, 王昊, 姚贤华, 李列列, 张敏, 胡圣能. 几何与非几何相似试件确定混凝土韧度及强度[J]. 工程力学, 2021, 38(9): 45-63. DOI: 10.6052/j.issn.1000-4750.2020.08.0573
引用本文: 管俊峰, 鲁猛, 王昊, 姚贤华, 李列列, 张敏, 胡圣能. 几何与非几何相似试件确定混凝土韧度及强度[J]. 工程力学, 2021, 38(9): 45-63. DOI: 10.6052/j.issn.1000-4750.2020.08.0573
GUAN Jun-feng, LU Meng, WANG Hao, YAO Xian-hua, LI Lie-lie, ZHANG Min, HU Sheng-neng. DETERMINATION OF THE FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING GEOMETRICALLY AND NON-GEOMETRICALLY SIMILAR SPECIMENS[J]. Engineering Mechanics, 2021, 38(9): 45-63. DOI: 10.6052/j.issn.1000-4750.2020.08.0573
Citation: GUAN Jun-feng, LU Meng, WANG Hao, YAO Xian-hua, LI Lie-lie, ZHANG Min, HU Sheng-neng. DETERMINATION OF THE FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING GEOMETRICALLY AND NON-GEOMETRICALLY SIMILAR SPECIMENS[J]. Engineering Mechanics, 2021, 38(9): 45-63. DOI: 10.6052/j.issn.1000-4750.2020.08.0573

几何与非几何相似试件确定混凝土韧度及强度

DETERMINATION OF THE FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING GEOMETRICALLY AND NON-GEOMETRICALLY SIMILAR SPECIMENS

  • 摘要: 几何相似与非几何相似试件,分别为尺寸效应与边界效应模型的推荐试件型式。考虑尺寸效应和边界效应模型的各自特点与优势,提出了改进的混凝土离散颗粒断裂模型。基于几何相似与非几何相似两类试件的断裂试验,确定出混凝土的材料参数——断裂韧度与拉伸强度,并与试验强度值及由尺寸效应模型确定的断裂韧度进行了比较。结果表明:当韧带高度(Wa0)与骨料代表尺寸di的比值约为10时,对应的断裂韧度与拉伸强度的确定曲线的相关系数最佳,且与试验强度值、尺寸效应模型断裂韧度计算值吻合较好。采用几何相似、非几何相似、几何与非几何相似试件确定的混凝土材料参数,分别建立了不同情况下混凝土断裂破坏设计预测曲线,其±20%即可涵盖全部试验数据。基于统计归纳,可取虚拟裂缝扩展量Δafic=ndi和特征裂缝长度a_\infty ^ *=0.5di,进而建立了峰值荷载与断裂韧度、峰值荷载与拉伸强度的解析关系式,实现了由实测峰值荷载直接确定出混凝土的断裂韧度与拉伸强度的目的,预测值的±15%可涵盖所有试验数据。基于解析公式,预测了满足线弹性断裂的大尺寸真实结构的峰值状态。

     

    Abstract: Geometrically similar specimens and non-geometrically similar specimens are respectively recommended for the size effect model (SEM) and the boundary effect model (BEM). Considering the individual characteristics and advantages of the SEM and BEM, it proposed an improved discrete particle fracture model for concrete. The fracture tests of two types of specimens with geometrical and non-geometrical similarity are used to determine the material parameters of concrete, that is, the fracture toughness and tensile strength. The determined strengths are compared with the experimental strengths. The determined fracture toughness is compared with the values determined by the SEM. The results show that when the ratio of the ligament length (Wa0) to the representative size of aggregate di is approximately 10, the correlation coefficient of the determination curves for the fracture toughness and tensile strength is the best. The determined fracture toughness and tensile strength are in good agreement with the experimental strengths and the fracture toughness from the SEM. Based on the determined concrete material parameters using the geometrically similar, the non-geometrically similar, and the geometrically and non-geometrically similar specimens, the corresponding design curves of concrete under different conditions are established. The design curves can cover all test data by ±20%. Based on a statistical analysis, the fictitious crack growth length Δafic=ndi and the characteristic crack length a_\infty ^ *=0.5di can be taken. Then the analytical relations between the peak load and fracture toughness and between the peak load and tensile strength are established. The purpose of directly determining the fracture toughness and tensile strength of concrete using the experimental peak loads is achieved. ±15% of the predicted curves can cover all the experimental data. Based on the analytical formulas, the peak loads of large-scale real concrete structures that exhibit linear elastic fracture can be predicted.

     

/

返回文章
返回