Citation: | CHANG Hong-fei, LI Zhao-wei, ZUO Wen-kang, LUO Zi, AN Ai-chen, SONG Xin-yi. EXPERIMENTAL STUDY ON CHANNEL-CASING REINFORCED SHS X-JOINTS UNDER IN-PLANE BENDING[J]. Engineering Mechanics, 2024, 41(5): 96-106. DOI: 10.6052/j.issn.1000-4750.2022.05.0407 |
Channel-casing can effectively improve the capacity and stiffness of joints, which can be used for local reinforcement of steel tubular joint in service. To study the in-plane bending performance of channel-casing reinforced SHS (square hollow section) joint, 5 SHS X-joints with a brace-to-chord diameter ratio β of 0.58, 0.7 and 1.0 were tested under in-plane bending load. The results show that the channel-casing reinforcement can effectively improve the bending performance of joints. When β=0.58 and β=0.7, the bending capacity of channel-casing reinforced joints increases by 37% and 163% respectively. The stiffness of reinforced joints is slightly lower than that of the joint with equal width, but its ductility is better. The brace-to-chord diameter ratio and the thickness of the channel-casing are two key parameters influencing the in-plane bending behavior of the reinforced joints. And the reinforcement of channel-casing can effectively protect the chord of the joint, which leads to the transformation of failure mode of specimens from the failure of chord or welding seam to the failure of brace. Further mechanism analysis shows that the channel-casing can form a common bearing carrier with a chord wall, which improves the bearing capacity and stiffness of the joint owing to local thickening. Finally, the applicability of the formulas for calculating the flexural capacity of the channel-casing reinforced joints are compared and analyzed, and suggestions for design are proposed.
[1] |
赵必大, 蔡扬政, 王伟. 支主管夹角对X形圆钢管节点平面外受弯性能影响[J]. 工程力学, 2019, 36(7): 99 − 108. doi: 10.6052/j.issn.1000-4750.2018.08.0285
ZHAO Bida, CAI Yangzheng, WANG Wei. Effect of the brace-to-chord angle on the out-of-plane flexural behavior of unstiffened CHS X-joints [J]. Engineering Mechanics, 2019, 36(7): 99 − 108. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.0285
|
[2] |
王庆凡, 曲慧, 李伟, 等. 内置加劲环K型管节点抗冲击性能研究[J]. 工程力学, 2022, 39(5): 133 − 144. doi: 10.6052/j.issn.1000-4750.2021.02.0151
WANG Qingfan, QU Hui, LI Wei, et al. Study on impact performance of K-type tubular joints with stiffening inner rings [J]. Engineering Mechanics, 2022, 39(5): 133 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0151
|
[3] |
马昕煦, 陈以一. 支方主圆T形相贯节点轴压承载力计算公式[J]. 工程力学, 2017, 34(5): 163 − 170.
MA Xinxu, CHEN Yiyi. Ultimate strength formulae for RHS-CHS T-joints under axial compression [J]. Engineering Mechanics, 2017, 34(5): 163 − 170. (in Chinese)
|
[4] |
沈国辉, 陈震, 郭勇, 等. 带加劲肋十字型钢管节点支管轴压的承载力研究[J]. 工程力学, 2013, 30(9): 70 − 75. doi: 10.6052/j.issn.1000-4750.2012.05.0364
SHEN Guohui, CHEN Zhen, GUO Yong, et al. Bearing capacity of cross-shaped steel tubular joints with reinforced plate under brace compression [J]. Engineering Mechanics, 2013, 30(9): 70 − 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.05.0364
|
[5] |
AHMADI H, LOTFOLLAHI-YAGHIN M A, ASOODEH S. Degree of bending (DoB) in tubular K-joints of offshore structures subjected to in-plane bending (IPB) loads: Study of geometrical effects and parametric formulation [J]. Ocean Engineering, 2015, 102: 105 − 116. doi: 10.1016/j.oceaneng.2015.04.050
|
[6] |
赵中伟, 吴刚. 锈蚀焊接空心球节点随机抗压承载力研究[J]. 工程力学, 2021, 38(5): 219 − 228, 238. doi: 10.6052/j.issn.1000-4750.2020.07.0472
ZHAO Zhongwei, WU Gang. Random compression capacity of corroded WHSJS [J]. Engineering Mechanics, 2021, 38(5): 219 − 228, 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0472
|
[7] |
CHENG B, HUANG F H, LI C, et al. Hot spot stress and fatigue behavior of bird-beak SHS X-joints subjected to brace in-plane bending [J]. Thin-Walled Structures, 2020, 150: 106701. doi: 10.1016/j.tws.2020.106701
|
[8] |
CHANG H F, XIA J W, ZHANG F J, et al. Compression behavior of doubler-plate reinforced square hollow section T-joints [J]. Advanced Steel Construction, 2014, 10(3): 289 − 309.
|
[9] |
王文杰, 邵永波, 夏辉. 环口板加固T型方钢管节点在轴压作用下极限承载力研究[J]. 工程力学, 2012, 29(6): 138 − 145. doi: 10.6052/j.issn.1000-4750.2010.09.0635
WANG Wenjie, SHAO Yongbo, XIA Hui. Research on the static strength of square tubular T-joints reinforced with collar plate under axial compression [J]. Engineering Mechanics, 2012, 29(6): 138 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.09.0635
|
[10] |
常鸿飞, 夏军武, 段晓牧, 等. 方钢管覆板及竖向插板加强T形节点受压静力试验[J]. 建筑结构学报, 2013, 34(10): 57 − 63. doi: 10.14006/j.jzjgxb.2013.10.007
CHANG Hongfei, XIA Junwu, DUAN Xiaomu, et al. Experimental study on compression capacity of doubler or vertical inner plate reinforced square tubular T-joints [J]. Journal of Building Structures, 2013, 34(10): 57 − 63. (in Chinese) doi: 10.14006/j.jzjgxb.2013.10.007
|
[11] |
XU J X, JIANG W, HAN J P, et al. Fire resistance of reinforced SHS T-joints considering gradient temperature effect under post-earthquake fire [J]. Journal of Constructional Steel Research, 2022, 191: 107195. doi: 10.1016/j.jcsr.2022.107195
|
[12] |
NASSIRAEI H, LOTFOLLAHI-YAGHIN M A, AHMADI H. Structural behavior of tubular T/Y-joints with collar plate under static in-plane bending [J]. Journal of Constructional Steel Research, 2016, 123: 121 − 134. doi: 10.1016/j.jcsr.2016.04.029
|
[13] |
NASSIRAEI H. Local joint flexibility of CHS T/Y-connections strengthened with collar plate under in-plane bending load: Parametric study of geometrical effects and design formulation [J]. Ocean Engineering, 2020, 202: 107054. doi: 10.1016/j.oceaneng.2020.107054
|
[14] |
CHEN X X, CHEN Y, CHEN D F. Plate reinforced square hollow section X-Joints subjected to in-plane moment [J]. Journal of Central South University, 2015, 22(3): 1002 − 1015. doi: 10.1007/s11771-015-2611-x
|
[15] |
CHOO Y S, LIANG J X, VAN DER VEGTE G J, et al. Static strength of doubler plate reinforced CHS X-joints loaded by in-plane bending [J]. Journal of Constructional Steel Research, 2004, 60(12): 1725 − 1744. doi: 10.1016/j.jcsr.2004.05.004
|
[16] |
CHOO Y S, LIANG J X, VAN DER VEGTE G J, et al. Static strength of collar plate reinforced CHS X-joints loaded by in-plane bending [J]. Journal of Constructional Steel Research, 2004, 60(12): 1745 − 1760. doi: 10.1016/j.jcsr.2004.05.005
|
[17] |
CECS 280: 2010, 钢管结构技术规程[S]. 北京: 中国计划出版社, 2010.
CECS 280: 2010, Technical specification for structures with steel hollow sections [S]. Beijing: China Planning Press, 2010. (in Chinese)
|
[18] |
邢丽, 赵阳, 傅学怡, 等. 改进贴板加强的钢管受弯连接节点试验研究[J]. 土木工程学报, 2007, 40(12): 1 − 7. doi: 10.3321/j.issn:1000-131x.2007.12.001
XING Li, ZHAO Yang, FU Xueyi, et al. Experimental study on the steel tube moment connections with modified cover-plated reinforcement [J]. China Civil Engineering Journal, 2007, 40(12): 1 − 7. (in Chinese) doi: 10.3321/j.issn:1000-131x.2007.12.001
|
[19] |
GOMES N V, DE LIMA L R O, DA S. VELLASCO P C G, et al. Experimental and numerical investigation of SHS truss T-joints reinforced with sidewall plates [J]. Thin-Walled Structures, 2019, 145: 106404. doi: 10.1016/j.tws.2019.106404
|
[20] |
XIA J W, CHANG H F, GOLDSWORTHY H, et al. Axial hysteretic behavior of doubler-plate reinforced square hollow section tubular T-joints [J]. Marine Structures, 2017, 55: 162 − 181. doi: 10.1016/j.marstruc.2017.05.007
|
[21] |
CHEN K M, HUANG H H, WU Q X, et al. Experimental and finite element analysis research on the fatigue performance of CHS K-joints [J]. Engineering Structures, 2019, 197: 109365. doi: 10.1016/j.engstruct.2019.109365
|
[22] |
常鸿飞. 方钢管加强节点及其桁架结构的承载机理与力学模型研究[D]. 徐州: 中国矿业大学, 2013.
CHANG Hongfei. Bearing mechanism and mechanical model of reinforced SHS joint and truss structure [D]. Xuzhou: China University of Mining and Technology, 2013. (in Chinese)
|
[23] |
陈誉, 张钻湖. 腹杆内灌混凝土十字形圆钢管节点平面内抗弯性能试验研究[J]. 土木工程学报, 2012, 45(7): 97 − 104. doi: 10.15951/j.tmgcxb.2012.07.023
CHEN Yu, ZHANG Zuanhu. Experimental study of in-plane bending property of concrete filled brace circular section X-joints [J]. China Civil Engineering Journal, 2012, 45(7): 97 − 104. (in Chinese) doi: 10.15951/j.tmgcxb.2012.07.023
|
[24] |
GB/T 2975−2018, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京: 国家市场监督管理总局, 2018.
GB/T 2975−2018, Steel and steel products-Location and preparation of samples and test pieces for mechanical testing [S]. Beijing: General Administration for National Market Supervision, 2018. (in Chinese)
|
[25] |
GB/T 228.1−2010, 金属材料拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011.
GB/T 228.1−2010, Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: Standards Press of China, 2011. (in Chinese)
|
[26] |
陈以一, 彭礼. 矩形钢管贯通式节点抗弯性能研究[J]. 建筑结构学报, 2004, 25(3): 1 − 7. doi: 10.3321/j.issn:1000-6869.2004.03.001
CHEN Yiyi, PENG Li. Experimental study on bending properties of through-type rectangular tubular joint [J]. Journal of Building Structures, 2004, 25(3): 1 − 7. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.03.001
|
[27] |
ZHAO X L. Deformation limit and ultimate strength of welded T-joints in cold-formed RHS sections [J]. Journal of Constructional Steel Research, 2000, 53(2): 149 − 165. doi: 10.1016/S0143-974X(99)00063-2
|
[28] |
CHEN Y, CHEN D F. Ultimate capacities formulae of collar and doubler plates reinforced SHS X-joints under in-plane bending [J]. Thin-Walled Structures, 2016, 99: 21 − 34. doi: 10.1016/j.tws.2015.11.011
|
[29] |
常鸿飞, 李照伟, 钱玉龙, 等. 方钢管柱-H型钢梁槽钢连接节点受弯性能试验研究及有限元参数分析[J]. 建筑结构学报, 2021, 42(2): 92 − 102. doi: 10.14006/j.jzjgxb.2020.c184
CHANG Hongfei, LI Zhaowei, QIAN Yulong, et al. Experimental and parametric study on flexural performance of transverse reverse channel connections between square hollow section column and H-beam [J]. Journal of Building Structures, 2021, 42(2): 92 − 102. (in Chinese) doi: 10.14006/j.jzjgxb.2020.c184
|
[30] |
陈以一, 赵必大, 王伟, 等. 平面KK型圆钢管相贯节点平面外受弯性能研究[J]. 土木工程学报, 2010, 43(11): 8 − 16. doi: 10.15951/j.tmgcxb.2010.11.007
CHEN Yiyi, ZHAO Bida, WANG Wei, et al. Behavior of unstiffened CHS KK-joints under cyclic out-of-plane bending [J]. China Civil Engineering Journal, 2010, 43(11): 8 − 16. (in Chinese) doi: 10.15951/j.tmgcxb.2010.11.007
|
[31] |
PACKER J A, WARDENIER J, ZHAO X L, et al. Design guide for rectangular hollow section (RHS) joints under predominantly static loading [M]. 2nd ed. Geneva, Switzerland: CIDECT, 2009: 60 − 65.
|
[32] |
EN 1993-1-8, Eurocode 3 - Design of steel structures - Structures - Part 1-8: Design of joints [S]. Brussels: CEN, ECCS, 2010: 117 − 123.
|