BAI Yu-lei, YANG Hong-long, JIA Jun-feng, MEI Shi-jie. FINITE ELEMENT ANALYSIS ON LARGE-RUPTURE-STRAIN (LRS) FRP-CONFINED CONCRETE BASED ON MODIFIED CONCRETE DAMAGED PLASTICITY MODEL[J]. Engineering Mechanics, 2023, 40(4): 129-143. DOI: 10.6052/j.issn.1000-4750.2021.10.0771
Citation: BAI Yu-lei, YANG Hong-long, JIA Jun-feng, MEI Shi-jie. FINITE ELEMENT ANALYSIS ON LARGE-RUPTURE-STRAIN (LRS) FRP-CONFINED CONCRETE BASED ON MODIFIED CONCRETE DAMAGED PLASTICITY MODEL[J]. Engineering Mechanics, 2023, 40(4): 129-143. DOI: 10.6052/j.issn.1000-4750.2021.10.0771

FINITE ELEMENT ANALYSIS ON LARGE-RUPTURE-STRAIN (LRS) FRP-CONFINED CONCRETE BASED ON MODIFIED CONCRETE DAMAGED PLASTICITY MODEL

More Information
  • Received Date: October 07, 2021
  • Revised Date: December 10, 2021
  • Available Online: January 16, 2022
  • Accurate finite element analysis (FEA) depends on the accurate definition of materials. The definition of material properties of large-rupture-strain fiber reinforced polymer (LRS FRP) in the fiber direction is realized by writing the user subroutine UMAT. Based on the theoretical framework of the concrete damaged plasticity model in Abaqus, a modified concrete damaged plasticity model is proposed to define the material properties of LRS FRP-confined concrete. These modifications include: the parameter K related to the yield criterion is calibrated by the test data of LRS FRP-confined concrete; the hardening/softening criterion is related to the confinement stiffness; the flow rule is related to axial plastic strain. The modified material model is used for FEA. The results show that the stress-strain curve predicted by FEA is consistent with the test results. Based on the FEA results, the non-uniform of stress distribution on the rectangular column section is discussed, which can be divided into effective confinement area and weak confinement area according to the confinement effect, and the non-uniform stress distribution in the effective confinement area increases with the increase of section ratio (the ratio of long side to short side).
  • [1]
    TENG J G, CHEN J F, SMITH S T, et al. Behavior and strength of FRP-strengthened RC structures: A state-of-the-art review [J]. The Institutionof Civil Engineers-Structures and Buildings, 2003, 156(1): 51 − 62. doi: 10.1680/stbu.2003.156.1.51
    [2]
    XIAO Y. Applications of FRP composites in concrete columns [J]. Advance of Structureal Enginerring, 2004, 7(4): 335 − 343. doi: 10.1260/1369433041653552
    [3]
    HOLLAWAY L C. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites [M]. UK, Woodhead Publishing, 2008.
    [4]
    刘兴喜, 徐荣桥. FRP 加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(增刊 1): 149 − 153. doi: 10.6052/j.issn.1000-4750.2018.05.S028

    LIU Xingxi, XU Rongqiao. Interfacial shear stress in FRP-strengthened RC beams [J]. Engineering mechanics, 2019, 36(Suppl 1): 149 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S028
    [5]
    王东锋, 邵永波, 欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2021, 38(10): 188 − 199. doi: 10.6052/j.issn.1000-4750.2020.10.0732

    WANG Dongfeng, SHAO Yongbo, OU Jialing. Experimental study on axial compressive capacity of corroded concrete filled circular CFRP-steel tube stubs [J]. Engineering Mechanics, 2021, 38(10): 188 − 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0732
    [6]
    ANGGAWIDJAJA D, UEDA T, DAI J G, et al. Deformation capacity of RC piers wrapped by new fiberreinforced polymer with large fracture strain [J]. Cement and Concrete Composites, 2006, 28(10): 914 − 927. doi: 10.1016/j.cemconcomp.2006.07.011
    [7]
    DAI J G, LAM L, UEDA T. Seismic retrofit of square RC columns with polyethylene terephthalate (PET) fibre reinforced polymer composites [J]. Construction and Building Materials, 2012, 27(1): 206 − 217. doi: 10.1016/j.conbuildmat.2011.07.058
    [8]
    LAM L, TENG J G. Design-oriented stress–strain model for FRP-confined concrete [J]. Construction and Building Materials, 2003, 17(6/7): 471 − 489. doi: 10.1016/S0950-0618(03)00045-X
    [9]
    LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns [J]. Journal of Reinforced Plastics and Composites, 2003, 22(13): 1149 − 1186. doi: 10.1177/0731684403035429
    [10]
    WU Y F, WANG L M. Unified strength model for square and circular concrete columns confined by external jacket [J]. Journal of Structural Engineering, 2009, 135(3): 253 − 261. doi: 10.1061/(ASCE)0733-9445(2009)135:3(253)
    [11]
    POUR A F, OZBAKKALOGLU T, VINCENT T. Simplified design-oriented axial stress-strain model for FRP-confined normal- and high-strength concrete [J]. Engineering Structures, 2018, 175(15): 501 − 516.
    [12]
    JIANG T, TENG J G. Analysis-oriented stress–strain models for FRP–confined concrete [J]. Engineering Structures, 2007, 29(11): 2968 − 2986. doi: 10.1016/j.engstruct.2007.01.010
    [13]
    XIAO Q G, TENG J G, YU T. Behavior and modeling of confined high-strength concrete [J]. Journal of Composites for Construction, 2010, 14(3): 249 − 259. doi: 10.1061/(ASCE)CC.1943-5614.0000070
    [14]
    DAI J G, BAI Y L, TENG J G. Behavior and modeling of concrete confined with FRP composites of large deformability [J]. Journal of Composites for Construction, 2011, 15(6): 963 − 973. doi: 10.1061/(ASCE)CC.1943-5614.0000230
    [15]
    MIRMIRAN A, ZAGERS K, YUAN W Q. Nonlinear finite element modeling of concrete confined by fiber composites [J]. Finite Elements in Analysis and Design, 2000, 35(1): 79 − 96. doi: 10.1016/S0168-874X(99)00056-6
    [16]
    PARENT P, LABOSSIERE P. Finite element analysis of reinforced concrete columns confined with composite materials [J]. Canadian Journal of Civil Engineering, 2000, 27: 400 − 411. doi: 10.1139/l99-065
    [17]
    KWON M, SPACONE E. Three-dimensional finite element analyses of reinforced concrete columns [J]. Computers & Structures, 2002, 80(2): 199 − 212.
    [18]
    MALVAR L J, MORRILL K B, CRAWFORD J E. Numerical Modeling of Concrete Confined by Fiber-Reinforced Composites [J]. Journal of Composites for Construction, 2004, 8(4): 315 − 322. doi: 10.1061/(ASCE)1090-0268(2004)8:4(315)
    [19]
    黄羽立. FRP 约束混凝土的分析与本构模型 [D]. 北京: 清华大学, 2005.

    HUANG Yuli. Analysis-oriented and constitutive modeling of FRP-confined concrete [D]. Beijing: Tsinghua University, 2005. (in Chinese)
    [20]
    KARABINIS A I, KIOUSIS P D. Effects of confinement on concrete columns: Plasticity approach [J]. Journal of Structural Engineering, 1994, 120(9): 2747 − 2767. doi: 10.1061/(ASCE)0733-9445(1994)120:9(2747)
    [21]
    KARABINIS A I, KIOUSIS P D. Strength and ductility of rectangular concrete columns: A plasticity approach [J]. Journal of Structural Engineering, 1996, 122(3): 267 − 274. doi: 10.1061/(ASCE)0733-9445(1996)122:3(267)
    [22]
    KARABINIS A I, ROUSAKIS T C. Concrete confined by FRP material: A plasticity approach [J]. Engineering Structures, 2002, 24(7): 923 − 932. doi: 10.1016/S0141-0296(02)00011-1
    [23]
    ROUSAKIS T C, KARABINIS A I, KIOUSIS P D. FRP-confined concrete members: Axial compression experiments and plasticity modelling [J]. Engineering Structures, 2007, 29(7): 1343 − 1353. doi: 10.1016/j.engstruct.2006.08.006
    [24]
    YU T, TENG J G, WONG Y L, et al. Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model [J]. Engineering Structures, 2010, 32(3): 665 − 679. doi: 10.1016/j.engstruct.2009.11.014
    [25]
    YU T, TENG J G, WONG Y L, et al. Finite element modeling of confined concrete-II: Plastic-damage model [J]. Engineering Structures, 2010, 32(3): 680 − 691. doi: 10.1016/j.engstruct.2009.11.013
    [26]
    焦延涛, 程立平. 一种新的混凝土各向异性弹塑性损伤本构模型及其数值实施[J]. 工程力学, 2022, 39(8): 122 − 137. doi: 10.6052/j.issn.1000-4750.2021.04.0297

    JIAO Yantao, CHENG Liping. A new anisotropic plastic-damaged model and its numerical implementation for plain concrete [J]. Engineering Mechanics, 2022, 39(8): 122 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0297
    [27]
    LIN G, TENG J G. Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading [J]. Journal of Composites for Construction, 2017, 21(4): 04017003. doi: 10.1061/(ASCE)CC.1943-5614.0000772
    [28]
    ZENG J J, GUO Y C, LI L J, et al. Behavior and three-dimensional finite element modeling of circular concrete columns partially wrapped with FRP strips [J]. Polymers, 2018, 10(3): 10030253. doi: 10.3390/polym10030253
    [29]
    BAI Y L, DAI J G, MOHAMMADI M, et al. Stiffness-based design-oriented compressive stress-strain model for large-rupture-strain (LRS) FRP-confined concrete [J]. Composite Structures, 2019, 223(1): 110953.
    [30]
    Abaqus. Abaqus Analysis User’s Manual, version 2021. 2021.
    [31]
    LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299 − 326. doi: 10.1016/0020-7683(89)90050-4
    [32]
    LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 829 − 900.
    [33]
    American Concrete Institute (ACI). Guide for the design and construction of structural concrete reinforced with FRP bars [S]. Detroit: ACI Committee, 2006.
    [34]
    American Concrete Institute (ACI). Building code requirements for structural concrete and commentary [S]. Mich: ACI Committee, 2008.
    [35]
    HANY N F, HANTOUCHE E G, HARAJLI M H. Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity [J]. Engineering Structures, 2016, 125(15): 1 − 14.
    [36]
    MOHAMMADI M, WU Y F. Modified plastic-damage model for passively confined concrete based on triaxial tests [J]. Composites Part B: Engineering, 2019, 159: 211 − 223. doi: 10.1016/j.compositesb.2018.09.074
    [37]
    KUPFER H, HILSDORF H K, RUSCH H. Behavior of concrete under biaxial stresses [J]. ACI Journal Proceedings, 1969, 66(8): 656 − 666.
    [38]
    LIM J C, OZBAKKALOGLU T. Investigation of the influence of the application path of confining pressure: Tests on actively confined and FRP-confined concretes [J]. Journal of Structural Engineering, 2015, 141(8): 04014203. doi: 10.1061/(ASCE)ST.1943-541X.0001177
    [39]
    BAI Y L, DAI J G, TENG J G. Cyclic Compressive Behavior of Concrete Confined with Large Rupture Strain FRP Composites [J]. Journal of Composites for Construction, 2014, 18(1): 04013025. doi: 10.1061/(ASCE)CC.1943-5614.0000386
    [40]
    于辉. 大应变FRP加固非延性RC柱抗震性能研究 [D]. 北京: 北京工业大学, 2018.

    YU Hui. Study on seismic behavior of non-ductile RC columns strengthened with large rupture strain FRP [D]. Beijing: Beijing University of Technology, 2018. (in Chinese)

Catalog

    Article Metrics

    Article views (616) PDF downloads (141) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return