STUDY ON ENERGY ABSORPTION PERFORMANCE OF THIN-WALLED ALUMINUM ALLOY MULTI-CELL PLATE (MCP) AND SINGLE-CELL PLATE (SCP) FILLED WITH ALUMINUM FOAM
-
摘要: 为研究泡沫铝填充薄壁铝合金多胞板(MCP)与单胞板(SCP)的吸能能力,该文设计了6种不同截面的泡沫铝填充薄壁铝合金多胞板与1种单胞板,并基于非线性有限元软件LS-DYNA建立了相应的数值模型。对经典铝合金板耐撞击试验及泡沫铝夹芯板耐撞击试验进行了数值模拟,分析表明该数值模型能较好的模拟泡沫铝夹芯板在冲击过程中的撞击力、挠度和变形形态。基于此模型对比研究了不同因素下多胞板与单胞板的吸能特性,分析了其破坏模式和吸能机理,最后通过正交试验的方法分析了不同因素下的吸能效率以及多胞板最优截面类型的选取。结果表明:在面外冲击作用下,泡沫铝填充薄壁铝合金板的破坏模式为对称圆锥式破坏,冲击力-位移曲线和变形图显示其变形过程分为两个阶段:弹塑性变形阶段和回弹阶段;在发生相同位移时,18种不同参数的多胞板,其吸收的总能量(E)和比吸能(SEA)相对于单胞板都提高了400%以上,是一种更具吸能特性的板,可广泛应用于防护工程。Abstract: To study the energy absorption capacity of different aluminum foam-filled thin-walled aluminum alloy multi-cell plate (MCP) and single-cell plate (SCP), six kinds of aluminum foam-filled thin-wall aluminum alloy multi-cell plate and one kind of single-cell plate were designed in this study, and the numerical models of MCP and SCP were established upon nonlinear finite element software LS-DYNA. The impact resistance test of the classic aluminum alloy plate and the impact resistance test of the aluminum foam sandwich plate are simulated numerically. The analysis shows that: the numerical model established can better simulate the impact force, the deflection and deformation of the aluminum foam sandwich plate during the impact process. Based on this model, the energy absorption characteristics of aluminum foam-filled thin-walled aluminum alloy MCP and SCP under different factors were compared and studied, and the failure mode and energy absorption mechanism were analyzed. Finally, the energy absorption efficiency under different factors and the selection of optimal section type of multi-cell plate were analyzed by orthogonal tests. The results show that the failure mode of aluminum foam-filled thin-wall aluminum alloy plates is symmetric conical failure under out-of-plane impact. Both structures have two stages: elastic-plastic deformation stage and spring-back stage. Under the same displacement, the total energy (E) and specific energy absorption (SEA) of the MCP with 18 different parameters are increased by more than 400% compared with that of the SCP, which is a plate with more energy absorption characteristics and can be widely used in protection engineering.
-
表 1 试件的几何尺寸
Table 1. Geometric dimensions of the specimen
试件编号 冲击速度/(m/s) a/mm b/mm 试件质量/g SCP 5/6.5/8 10 2980.00 1289.62 15 2970.00 1450.97 20 2960.00 1663.20 MCP1 5/6.5/8 10 363.75 1379.69 15 358.13 1571.01 20 352.50 1629.55 MCP2 5/6.5/8 10 372.50 1489.07 15 371.25 1682.65 20 370.00 1734.93 MCP3 5/6.5/8 10 993.33 1360.39 15 990.00 1554.03 20 986.67 1607.75 MCP4 5/6.5/8 10 175.29 1419.50 15 174.71 1689.01 20 174.12 1738.41 MCP5 5/6.5/8 10 270.91 1368.45 15 270.00 1422.54 20 269.09 1617.40 MCP6 5/6.5/8 10 425.71 1489.21 15 424.29 1823.11 20 422.86 2007.11 注:a表示空心薄壁铝合金板厚度和不同截面形式的内支撑厚度; b表示两个内支撑中轴线之间短边长度。 表 2 试验值与模拟值对比
Table 2. Comparison of experimental and simulated values
试件编号 板厚
/mm冲击速度
/(m/s)跨中挠度/mm 相对误差/(%) 模拟值 试验值 3UC-BH-05-1 3 9.02 −18.78 −19.47 3.54 5UC-BH-03-1 5 12.31 −18.38 −18.70 1.71 6UC-BH-02-1 6 13.22 −17.90 −18.16 1.43 表 3 多胞构件和单胞构件中各组分吸收的能量及能量百分比
Table 3. Energy and energy percentage absorbed by each component in multi-cell and single-cell components
试件
名称v/(m·s−1) EK/kJ EP/kJ EAPP/kJ EAFPP/kJ 百分占比 EP/EK EAPP/EP EAFPP/EP SCP 5.00 185 139 110 29.00 0.75 0.79 0.21 6.50 312 249 173 76.00 0.80 0.69 0.31 8.00 473 329 248 81.00 0.70 0.75 0.25 MCP1 5.00 185 143 108 35.00 0.77 0.76 0.24 6.50 313 257 203 54.00 0.82 0.79 0.21 8.00 473 402 329 73.00 0.85 0.82 0.18 MCP2 5.00 185 159 147 12.00 0.86 0.92 0.08 6.50 313 281 261 20.00 0.90 0.93 0.07 8.00 473 439 408 31.00 0.93 0.93 0.07 MCP3 5.00 186 148 141 7.00 0.80 0.95 0.05 6.50 314 265 253 12.00 0.84 0.95 0.05 8.00 475 415 396 19.00 0.87 0.95 0.05 MCP4 5.00 185 148 142 6.00 0.80 0.96 0.04 6.50 313 263 252 11.00 0.84 0.96 0.04 8.00 473 411 394 17.00 0.87 0.96 0.04 MCP5 5.00 185 150 138 12.00 0.81 0.92 0.08 6.50 313 263 247 16.00 0.84 0.94 0.06 8.00 473 409 384 25.00 0.86 0.94 0.06 MCP6 5.00 185 146 137 9.00 0.79 0.94 0.06 6.50 313 260 245 15.00 0.83 0.94 0.06 8.00 473 405 385 20.00 0.86 0.95 0.05 注:EK为总动能;EP为塑性变形能;EAFPP为泡沫铝的塑性变形能;EAPP为空心铝板的塑性变形能 表 4 多胞板MCP和单胞板SCP的吸能对比
Table 4. Comparison of energy absorption between MCP and SCP
编号 厚度/mm 速度/(m·s−1) 试件 质量m/g 总吸能E/J 能量提高率/(%) 比吸能SEA/(J·kg−1) SEA提高率/(%) 1 10 5.0 MCP1 1379.34 17226.94 754 12.49 699 2 10 5.0 MCP2 1489.07 58438.03 2799 39.24 2410 3 10 6.5 MCP3 1360.39 25169.78 886 18.50 834 4 10 6.5 MCP4 1419.50 53494.62 1995 37.69 1803 5 10 8.0 MCP5 1368.45 31861.91 931 23.28 871 6 10 8.0 MCP6 1489.21 48825.69 1479 32.79 1268 7 15 5.0 MCP6 1823.11 57696.66 1606 31.65 1258 8 15 5.0 MCP5 1422.54 46335.60 1270 32.57 1298 9 15 6.5 MCP1 1571.42 33 573.85 678 21.37 618 10 15 6.5 MCP2 1684.65 91 468.59 2020 54.30 1726 11 15 8.0 MCP4 1689.01 69 991.51 1233 41.44 1045 12 15 8.0 MCP3 1554.03 30 149.97 474 19.40 436 13 20 5.0 MCP4 1738.41 102 674.10 2464 59.06 2353 14 20 5.0 MCP3 1607.75 41 822.30 945 26.01 981 15 20 6.5 MCP5 1617.40 60 186.76 1014 37.21 1446 16 20 6.5 MCP6 2007.11 70 769.67 1210 35.26 985 17 20 8.0 MCP2 1734.93 181 267.70 2691 104.48 2576 18 20 8.0 MCP1 1629.55 51627.05 695 31.68 711 19 10 5.0 SCP 1289.62 2016.13 − 1.56 − 20 10 6.5 SCP 1289.62 2553.76 − 1.98 − 21 10 8.0 SCP 1289.62 3091.40 − 2.40 − 22 15 5.0 SCP 1450.97 3381.44 − 2.33 − 23 15 6.5 SCP 1450.97 4315.22 − 2.97 − 24 15 8.0 SCP 1450.97 5249.01 − 3.62 − 25 20 5.0 SCP 1663.20 4003.96 − 2.41 − 26 20 6.5 SCP 1663.20 5404.06 − 3.25 − 27 20 8.0 SCP 1663.20 6494.06 − 3.90 − -
[1] 张红英, 欧阳八生, 朱国军. 泡沫铝材料的研究与应用[J]. 粉末冶金技术, 2021, 39(1): 69 − 75. doi: 10.19591/j.cnki.cn11-1974/tf.2019060001ZHANG Hongying, OUYANG Basheng, ZHU Guojun. Research and application of aluminum foam materials [J]. Powder Metallurgy Technology, 2021, 39(1): 69 − 75. (in Chinese) doi: 10.19591/j.cnki.cn11-1974/tf.2019060001 [2] ZHU F, LU G. A review of blast and impact of metallic and sandwich structures [J]. Electronic Journal of Structural Engineering, 2007(1): 92 − 101. doi: 10.56748/ejse.681 [3] MOHAN K, YIP T H, IDAPALAPATI S, et al. Impact response of aluminum foam core sandwich structures [J]. Materials Science and Engineering:A, 2011, 529: 94 − 101. doi: 10.1016/j.msea.2011.08.066 [4] ZHANG X Y, XU F, ZANG Y Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact [J]. Composite Structures, 2020, 236: 111882. doi: 10.1016/j.compstruct.2020.111882 [5] SUN G Y, CHEN D D, WANG H X, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations [J]. International Journal of Impact Engineering, 2018, 122: 119 − 136. doi: 10.1016/j.ijimpeng.2018.08.007 [6] 孙宇杰, 高强, 马婉婷, 等. 泡沫铝夹芯板的低速冲击行为与仿真模拟研究[J]. 材料与冶金学报, 2023, 22(1): 67 − 74.SUN Yujie, GAO Qiang, MA Wanting, et al. Study on low-velocity impact behavior and simulation of aluminum foam sandwich panels [J]. Journal of Materials and Metallurgy, 2023, 22(1): 67 − 74. (in Chinese) [7] BUITRAGO B L, SANTIUSTE C, SÁNCHEZ-SÁEZ S, et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact [J]. Composite Structures, 2010, 92(9): 2090 − 2096. doi: 10.1016/j.compstruct.2009.10.013 [8] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243 − 2259. [9] 郭亚周, 刘小川, 何思渊, 等. 不同弹形撞击下泡沫铝夹芯结构动力学性能研究[J]. 兵工学报, 2019, 40(10): 2032 − 2041. doi: 10.3969/j.issn.1000-1093.2019.10.008GUO Yazhou, LIU Xiaochuan, HE Siyuan, et al. Research on dynamic properties of aluminum foam sandwich structure impacted by projectiles with different shapes [J]. Acta Armamentarii, 2019, 40(10): 2032 − 2041. (in Chinese) doi: 10.3969/j.issn.1000-1093.2019.10.008 [10] 邓旭辉, 李亚斌. 双层泡沫铝夹芯板抗冲击性能数值研究[J]. 铁道科学与工程学报, 2019, 16(10): 2603 − 2611.DENG Xuhui, LI Yabin. Numerical study on impact resistance of double-layer foam aluminum sandwich panels [J]. Journal of Railway Science and Engineering, 2019, 16(10): 2603 − 2611. (in Chinese) [11] QIU N, GAO Y K, FANG J G, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases [J]. Finite Elements in Analysis and Design, 2015, 104: 89 − 101. doi: 10.1016/j.finel.2015.06.004 [12] HUANG Z X, ZHANG X, ZHANG H. Energy absorption and optimization design of multi-cell tubes subjected to lateral indentation [J]. Thin-Walled Structures, 2018, 131: 179 − 191. doi: 10.1016/j.tws.2018.06.020 [13] TANG Z L, LIU S T, ZHANG Z H. Analysis of energy absorption characteristics of cylindrical multi-cell columns [J]. Thin-Walled Structures, 2013, 62: 75 − 84. doi: 10.1016/j.tws.2012.05.019 [14] DENG X L, LIU W Y. Crushing analysis and multi-objective crashworthiness optimization of multi-cell conical tube subjected to oblique loading [J]. Advances in Mechanical Engineering, 2019, 11(1): 1687814018824467. doi: 10.1177/1687814018824467 [15] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section [J]. Thin-Walled Structures, 2003, 41(10): 891 − 900. doi: 10.1016/S0263-8231(03)00046-6 [16] ROSSI A, FAWAZ Z, BEHDINAN K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes [J]. Thin-Walled Structures, 2005, 43(10): 1646 − 1661. doi: 10.1016/j.tws.2005.03.001 [17] NIA A A, PARSAPOUR M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2014, 74: 155 − 165. doi: 10.1016/j.tws.2013.10.005 [18] PIRMOHAMMAD S, MARZDASHTI S E. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads [J]. Thin-Walled Structures, 2016, 108: 291 − 304. doi: 10.1016/j.tws.2016.08.023 [19] GOEL M D. Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes [J]. Thin-Walled Structures, 2015, 90: 1 − 11. doi: 10.1016/j.tws.2015.01.004 [20] YIN H F, XIAO Y Y, WEN G L, et al. Multiobjective optimization for foam-filled multi-cell thin-walled structures under lateral impact [J]. Thin-Walled Structures, 2015, 94: 1 − 12. doi: 10.1016/j.tws.2015.03.031 [21] KILIÇASLAN C. Numerical crushing analysis of aluminum foam-filled corrugated single- and double-circular tubes subjected to axial impact loading [J]. Thin-Walled Structures, 2015, 96: 82 − 94. doi: 10.1016/j.tws.2015.08.009 [22] TRAN T. Study on the crashworthiness of windowed multi-cell square tubes under axial and oblique impact [J]. Thin-Walled Structures, 2020, 155: 106907. doi: 10.1016/j.tws.2020.106907 [23] 朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428ZHU Xiang, YIN Yao, WANG Rui, et al. Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428 [24] 黄睿. 轴向载荷下泡沫铝填充薄壁金属管吸能特性的研究[D]. 太原: 太原理工大学, 2015.HUANG Rui. Study on energy absorption properties of thin-walled metal tubes filled with aluminum foam under axial load [D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese) [25] ZHAO Y, YANG Z H, YU T L, et al. Mechanical properties and energy absorption capabilities of aluminium foam sandwich structure subjected to low-velocity impact [J]. Construction and Building Materials, 2021, 273: 121996. doi: 10.1016/j.conbuildmat.2020.121996 [26] RODRÍGUEZ-MILLÁN M, VAZ-ROMERO Á, ARIAS Á. Failure behavior of 2024-T3 aluminum under tension-torsion conditions [J]. Journal of Mechanical Science and Technology, 2015, 29(11): 4657 − 4663. doi: 10.1007/s12206-015-1011-3 [27] 张涛, 徐治平, 朱学康, 等. 泡沫铝填充薄壁结构吸能分析[J]. 舰船科学技术, 2007, 29(2): 52 − 56.ZHANG Tao, XU Zhiping, ZHU Xuekang, et al. Dynamic crushing of thin-walled extrusions filled with aluminium-foam [J]. Ship Science and Technology, 2007, 29(2): 52 − 56. (in Chinese) [28] MOHOTTI D, ALI M, NGO T, et al. Out-of-plane impact resistance of aluminium plates subjected to low velocity impacts [J]. Materials & Design, 2013, 50: 413 − 426. [29] 潘丹, 郭彦峰, 付云岗, 等. 纸夹芯和泡沫复合层状结构的静态缓冲吸能特性研究[J]. 工程力学, 2019, 36(2): 249 − 256. doi: 10.6052/j.issn.1000-4750.2017.11.0888PAN Dan, GUO Yanfeng, FU Yungang, et al. Static cushioning and energy absorption of composite layered structures with paper sandwich core and plastic foam [J]. Engineering Mechanics, 2019, 36(2): 249 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0888 [30] 吉美娟, 郭彦峰, 付云岗, 等. 纸瓦楞-蜂窝复合夹层结构的跌落冲击缓冲性能研究[J]. 工程力学, 2020, 37(10): 247 − 256. doi: 10.6052/j.issn.1000-4750.2019.11.0668JI Meijuan, GUO Yanfeng, FU Yungang, et al. Study on drop impact cushioning performance of paper corrugated-honeycomb composite sandwich structure [J]. Engineering Mechanics, 2020, 37(10): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0668 -