留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫铝填充薄壁铝合金多胞板与单胞板吸能性能研究

李显辉 李文博 朱翔 王蕊 杜永峰 李铁英

李显辉, 李文博, 朱翔, 王蕊, 杜永峰, 李铁英. 泡沫铝填充薄壁铝合金多胞板与单胞板吸能性能研究[J]. 工程力学, 2023, 40(11): 244-256. doi: 10.6052/j.issn.1000-4750.2022.08.0715
引用本文: 李显辉, 李文博, 朱翔, 王蕊, 杜永峰, 李铁英. 泡沫铝填充薄壁铝合金多胞板与单胞板吸能性能研究[J]. 工程力学, 2023, 40(11): 244-256. doi: 10.6052/j.issn.1000-4750.2022.08.0715
LI Xian-hui, LI Wen-bo, ZHU Xiang, WANG Rui, DU Yong-feng, LI Tie-ying. STUDY ON ENERGY ABSORPTION PERFORMANCE OF THIN-WALLED ALUMINUM ALLOY MULTI-CELL PLATE (MCP) AND SINGLE-CELL PLATE (SCP) FILLED WITH ALUMINUM FOAM[J]. Engineering Mechanics, 2023, 40(11): 244-256. doi: 10.6052/j.issn.1000-4750.2022.08.0715
Citation: LI Xian-hui, LI Wen-bo, ZHU Xiang, WANG Rui, DU Yong-feng, LI Tie-ying. STUDY ON ENERGY ABSORPTION PERFORMANCE OF THIN-WALLED ALUMINUM ALLOY MULTI-CELL PLATE (MCP) AND SINGLE-CELL PLATE (SCP) FILLED WITH ALUMINUM FOAM[J]. Engineering Mechanics, 2023, 40(11): 244-256. doi: 10.6052/j.issn.1000-4750.2022.08.0715

泡沫铝填充薄壁铝合金多胞板与单胞板吸能性能研究

doi: 10.6052/j.issn.1000-4750.2022.08.0715
基金项目: 国家自然科学基金项目(51778276,11802166);山西省科技厅应用基础研究计划项目(202103021223022);山西省教育厅高校科技创新项目(2020L0052)
详细信息
    作者简介:

    李显辉(1988−),男,山西人,博士生,主要从事结构抗冲击研究(E-mail: 776502212@qq.com)

    李文博(1996−),男,甘肃人,硕士生,主要从事结构抗冲击研究(E-mail: 2253124189@qq.com)

    王 蕊(1979−),女,山西人,教授,博士,博导,主要从事结构抗冲击研究(E-mail: wangrui@tyut.edu.cn)

    杜永峰(1962−),男,甘肃人,教授,博士,博导,主要从事结构工程与工程抗震研究(E-mail: dooyf@lut.cn)

    李铁英(1968−),男,山西人,教授,博士,博导,从事结构工程、建筑结构抗震及古建筑结构研究(E-mail: lty680412@163.com)

    通讯作者:

    朱 翔(1987−),男,甘肃人,副教授,博士,主要从事结构抗冲击、抗连续倒塌及抗震研究(E-mail: zhuxiang@sxu.edu.cn)

  • 中图分类号: TG146.2+1

STUDY ON ENERGY ABSORPTION PERFORMANCE OF THIN-WALLED ALUMINUM ALLOY MULTI-CELL PLATE (MCP) AND SINGLE-CELL PLATE (SCP) FILLED WITH ALUMINUM FOAM

  • 摘要: 为研究泡沫铝填充薄壁铝合金多胞板(MCP)与单胞板(SCP)的吸能能力,该文设计了6种不同截面的泡沫铝填充薄壁铝合金多胞板与1种单胞板,并基于非线性有限元软件LS-DYNA建立了相应的数值模型。对经典铝合金板耐撞击试验及泡沫铝夹芯板耐撞击试验进行了数值模拟,分析表明该数值模型能较好的模拟泡沫铝夹芯板在冲击过程中的撞击力、挠度和变形形态。基于此模型对比研究了不同因素下多胞板与单胞板的吸能特性,分析了其破坏模式和吸能机理,最后通过正交试验的方法分析了不同因素下的吸能效率以及多胞板最优截面类型的选取。结果表明:在面外冲击作用下,泡沫铝填充薄壁铝合金板的破坏模式为对称圆锥式破坏,冲击力-位移曲线和变形图显示其变形过程分为两个阶段:弹塑性变形阶段和回弹阶段;在发生相同位移时,18种不同参数的多胞板,其吸收的总能量(E)和比吸能(SEA)相对于单胞板都提高了400%以上,是一种更具吸能特性的板,可广泛应用于防护工程。
  • 图  1  单胞板(SCP)和多胞板(MCP)示意图

    Figure  1.  Schematic diagram of single-cell plate (SCP) and multi-cell plate (MCP)

    图  2  落锤冲击泡沫铝填充薄壁铝合金板的有限元模型

    Figure  2.  Finite element model of aluminum foam filled thin-walled aluminum alloy plate impacted by drop weight

    图  3  铝合金的应力-应变关系曲线[24]

    Figure  3.  Stress-strain relationship curve of aluminum alloy[24]

    图  4  泡沫铝的应力-应变关系曲线[24]

    Figure  4.  Stress-strain relationship curve of aluminum foam[24]

    图  5  试验与模拟的变形对比图

    Figure  5.  Comparison of deformation diagram between experimental and simulated

    图  6  试验与数值模拟跨中挠度曲线对比

    Figure  6.  Comparison of mid-span deflection curve between test and numerical simulation

    图  7  泡沫铝的应力-应变关系曲线

    Figure  7.  Stress-strain relationship curve of aluminum foam

    图  8  试验与模拟的变形模态对比

    Figure  8.  Comparison of experimental and simulated deformation modes

    图  9  数值模拟与试验的相关曲线对比

    Figure  9.  Comparison of correlation curves between numerical simulation and test

    图  10  泡沫铝填充薄壁铝合金单胞板与多胞板的破坏模式对比图

    Figure  10.  Contrast diagram of failure modes of thin-walled aluminum foam-filled single-cell plate (SCP) and multi-cell plate (MCP)

    图  11  不同截面形状下多胞构件的冲击力-位移曲线

    Figure  11.  Impact force-displacement curves of multi-cell members under different cross-section shapes

    图  12  不同壁厚下单胞板SCP和多胞板MCP6的冲击力时程曲线

    Figure  12.  The impact force time-history curves of SCP and MCP6 under different wall thicknesses

    图  13  不同壁厚下单胞板SCP和多胞板MCP6冲击载荷曲线

    Figure  13.  Impact load curves of SCP and MCP6 under different wall thicknesses

    图  14  不同冲击速度下单胞板SCP和多胞板MCP6冲击载荷曲线

    Figure  14.  Impact load curves of SCP and MCP6 under different impact velocity

    图  15  MCP6与SCP的能量对比

    Figure  15.  Comparison of energy between MCP6 and SCP

    图  16  多胞板和单胞板中的泡沫铝和空心铝板的内能关系

    Figure  16.  Internal energy relationship between foamed aluminum and hollow aluminum plates in multi-cell and single-cell components

    图  17  不同厚度下MCP和SCP能量与位移关系

    Figure  17.  Relationship between energy and displacement of MCP and SCP under different thicknesses

    图  18  不同速度下MCP和SCP能量与位移关系

    Figure  18.  Relationship between energy and displacement of MCP and SCP at different speeds

    图  19  不同厚度下MCP和SCP的SEA与位移关系

    Figure  19.  The relationship between SEA and displacement of MCP and SCP with different thickness

    表  1  试件的几何尺寸

    Table  1.   Geometric dimensions of the specimen

    试件编号冲击速度/(m/s)a/mmb/mm试件质量/g
    SCP5/6.5/8102980.001289.62
    152970.001450.97
    202960.001663.20
    MCP15/6.5/810363.751379.69
    15358.131571.01
    20352.501629.55
    MCP25/6.5/810372.501489.07
    15371.251682.65
    20370.001734.93
    MCP35/6.5/810993.331360.39
    15990.001554.03
    20986.671607.75
    MCP45/6.5/810175.291419.50
    15174.711689.01
    20174.121738.41
    MCP55/6.5/810270.911368.45
    15270.001422.54
    20269.091617.40
    MCP65/6.5/810425.711489.21
    15424.291823.11
    20422.862007.11
    注:a表示空心薄壁铝合金板厚度和不同截面形式的内支撑厚度; b表示两个内支撑中轴线之间短边长度。
    下载: 导出CSV

    表  2  试验值与模拟值对比

    Table  2.   Comparison of experimental and simulated values

    试件编号板厚
    /mm
    冲击速度
    /(m/s)
    跨中挠度/mm相对误差/(%)
    模拟值试验值
    3UC-BH-05-139.02−18.78−19.473.54
    5UC-BH-03-1512.31−18.38−18.701.71
    6UC-BH-02-1613.22−17.90−18.161.43
    下载: 导出CSV

    表  3  多胞构件和单胞构件中各组分吸收的能量及能量百分比

    Table  3.   Energy and energy percentage absorbed by each component in multi-cell and single-cell components

    试件
    名称
    v/(m·s−1)EK/kJEP/kJEAPP/kJEAFPP/kJ百分占比
    EP/EKEAPP/EPEAFPP/EP
    SCP5.0018513911029.000.750.790.21
    6.5031224917376.000.800.690.31
    8.0047332924881.000.700.750.25
    MCP15.0018514310835.000.770.760.24
    6.5031325720354.000.820.790.21
    8.0047340232973.000.850.820.18
    MCP25.0018515914712.000.860.920.08
    6.5031328126120.000.900.930.07
    8.0047343940831.000.930.930.07
    MCP35.001861481417.000.800.950.05
    6.5031426525312.000.840.950.05
    8.0047541539619.000.870.950.05
    MCP45.001851481426.000.800.960.04
    6.5031326325211.000.840.960.04
    8.0047341139417.000.870.960.04
    MCP55.0018515013812.000.810.920.08
    6.5031326324716.000.840.940.06
    8.0047340938425.000.860.940.06
    MCP65.001851461379.000.790.940.06
    6.5031326024515.000.830.940.06
    8.0047340538520.000.860.950.05
    注:EK为总动能;EP为塑性变形能;EAFPP为泡沫铝的塑性变形能;EAPP为空心铝板的塑性变形能
    下载: 导出CSV

    表  4  多胞板MCP和单胞板SCP的吸能对比

    Table  4.   Comparison of energy absorption between MCP and SCP

    编号厚度/mm速度/(m·s−1)试件质量m/g总吸能E/J能量提高率/(%)比吸能SEA/(J·kg−1)SEA提高率/(%)
    1105.0MCP11379.3417226.9475412.49699
    2105.0MCP21489.0758438.03279939.242410
    3106.5MCP31360.3925169.7888618.50834
    4106.5MCP41419.5053494.62199537.691803
    5108.0MCP51368.4531861.9193123.28871
    6108.0MCP61489.2148825.69147932.791268
    7155.0MCP61823.1157696.66160631.651258
    8155.0MCP51422.5446335.60127032.571298
    9156.5MCP11571.4233 573.8567821.37618
    10156.5MCP21684.6591 468.59202054.301726
    11158.0MCP41689.0169 991.51123341.441045
    12158.0MCP31554.0330 149.9747419.40436
    13205.0MCP41738.41102 674.10246459.062353
    14205.0MCP31607.7541 822.3094526.01981
    15206.5MCP51617.4060 186.76101437.211446
    16206.5MCP62007.1170 769.67121035.26985
    17208.0MCP21734.93181 267.702691104.482576
    18208.0MCP11629.5551627.0569531.68711
    19105.0SCP1289.622016.131.56
    20106.5SCP1289.622553.761.98
    21108.0SCP1289.623091.402.40
    22155.0SCP1450.973381.442.33
    23156.5SCP1450.974315.222.97
    24158.0SCP1450.975249.013.62
    25205.0SCP1663.204003.962.41
    26206.5SCP1663.205404.063.25
    27208.0SCP1663.206494.063.90
    下载: 导出CSV
  • [1] 张红英, 欧阳八生, 朱国军. 泡沫铝材料的研究与应用[J]. 粉末冶金技术, 2021, 39(1): 69 − 75. doi: 10.19591/j.cnki.cn11-1974/tf.2019060001

    ZHANG Hongying, OUYANG Basheng, ZHU Guojun. Research and application of aluminum foam materials [J]. Powder Metallurgy Technology, 2021, 39(1): 69 − 75. (in Chinese) doi: 10.19591/j.cnki.cn11-1974/tf.2019060001
    [2] ZHU F, LU G. A review of blast and impact of metallic and sandwich structures [J]. Electronic Journal of Structural Engineering, 2007(1): 92 − 101. doi: 10.56748/ejse.681
    [3] MOHAN K, YIP T H, IDAPALAPATI S, et al. Impact response of aluminum foam core sandwich structures [J]. Materials Science and Engineering:A, 2011, 529: 94 − 101. doi: 10.1016/j.msea.2011.08.066
    [4] ZHANG X Y, XU F, ZANG Y Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact [J]. Composite Structures, 2020, 236: 111882. doi: 10.1016/j.compstruct.2020.111882
    [5] SUN G Y, CHEN D D, WANG H X, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations [J]. International Journal of Impact Engineering, 2018, 122: 119 − 136. doi: 10.1016/j.ijimpeng.2018.08.007
    [6] 孙宇杰, 高强, 马婉婷, 等. 泡沫铝夹芯板的低速冲击行为与仿真模拟研究[J]. 材料与冶金学报, 2023, 22(1): 67 − 74.

    SUN Yujie, GAO Qiang, MA Wanting, et al. Study on low-velocity impact behavior and simulation of aluminum foam sandwich panels [J]. Journal of Materials and Metallurgy, 2023, 22(1): 67 − 74. (in Chinese)
    [7] BUITRAGO B L, SANTIUSTE C, SÁNCHEZ-SÁEZ S, et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact [J]. Composite Structures, 2010, 92(9): 2090 − 2096. doi: 10.1016/j.compstruct.2009.10.013
    [8] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243 − 2259.
    [9] 郭亚周, 刘小川, 何思渊, 等. 不同弹形撞击下泡沫铝夹芯结构动力学性能研究[J]. 兵工学报, 2019, 40(10): 2032 − 2041. doi: 10.3969/j.issn.1000-1093.2019.10.008

    GUO Yazhou, LIU Xiaochuan, HE Siyuan, et al. Research on dynamic properties of aluminum foam sandwich structure impacted by projectiles with different shapes [J]. Acta Armamentarii, 2019, 40(10): 2032 − 2041. (in Chinese) doi: 10.3969/j.issn.1000-1093.2019.10.008
    [10] 邓旭辉, 李亚斌. 双层泡沫铝夹芯板抗冲击性能数值研究[J]. 铁道科学与工程学报, 2019, 16(10): 2603 − 2611.

    DENG Xuhui, LI Yabin. Numerical study on impact resistance of double-layer foam aluminum sandwich panels [J]. Journal of Railway Science and Engineering, 2019, 16(10): 2603 − 2611. (in Chinese)
    [11] QIU N, GAO Y K, FANG J G, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases [J]. Finite Elements in Analysis and Design, 2015, 104: 89 − 101. doi: 10.1016/j.finel.2015.06.004
    [12] HUANG Z X, ZHANG X, ZHANG H. Energy absorption and optimization design of multi-cell tubes subjected to lateral indentation [J]. Thin-Walled Structures, 2018, 131: 179 − 191. doi: 10.1016/j.tws.2018.06.020
    [13] TANG Z L, LIU S T, ZHANG Z H. Analysis of energy absorption characteristics of cylindrical multi-cell columns [J]. Thin-Walled Structures, 2013, 62: 75 − 84. doi: 10.1016/j.tws.2012.05.019
    [14] DENG X L, LIU W Y. Crushing analysis and multi-objective crashworthiness optimization of multi-cell conical tube subjected to oblique loading [J]. Advances in Mechanical Engineering, 2019, 11(1): 1687814018824467. doi: 10.1177/1687814018824467
    [15] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section [J]. Thin-Walled Structures, 2003, 41(10): 891 − 900. doi: 10.1016/S0263-8231(03)00046-6
    [16] ROSSI A, FAWAZ Z, BEHDINAN K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes [J]. Thin-Walled Structures, 2005, 43(10): 1646 − 1661. doi: 10.1016/j.tws.2005.03.001
    [17] NIA A A, PARSAPOUR M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2014, 74: 155 − 165. doi: 10.1016/j.tws.2013.10.005
    [18] PIRMOHAMMAD S, MARZDASHTI S E. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads [J]. Thin-Walled Structures, 2016, 108: 291 − 304. doi: 10.1016/j.tws.2016.08.023
    [19] GOEL M D. Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes [J]. Thin-Walled Structures, 2015, 90: 1 − 11. doi: 10.1016/j.tws.2015.01.004
    [20] YIN H F, XIAO Y Y, WEN G L, et al. Multiobjective optimization for foam-filled multi-cell thin-walled structures under lateral impact [J]. Thin-Walled Structures, 2015, 94: 1 − 12. doi: 10.1016/j.tws.2015.03.031
    [21] KILIÇASLAN C. Numerical crushing analysis of aluminum foam-filled corrugated single- and double-circular tubes subjected to axial impact loading [J]. Thin-Walled Structures, 2015, 96: 82 − 94. doi: 10.1016/j.tws.2015.08.009
    [22] TRAN T. Study on the crashworthiness of windowed multi-cell square tubes under axial and oblique impact [J]. Thin-Walled Structures, 2020, 155: 106907. doi: 10.1016/j.tws.2020.106907
    [23] 朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428

    ZHU Xiang, YIN Yao, WANG Rui, et al. Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428
    [24] 黄睿. 轴向载荷下泡沫铝填充薄壁金属管吸能特性的研究[D]. 太原: 太原理工大学, 2015.

    HUANG Rui. Study on energy absorption properties of thin-walled metal tubes filled with aluminum foam under axial load [D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese)
    [25] ZHAO Y, YANG Z H, YU T L, et al. Mechanical properties and energy absorption capabilities of aluminium foam sandwich structure subjected to low-velocity impact [J]. Construction and Building Materials, 2021, 273: 121996. doi: 10.1016/j.conbuildmat.2020.121996
    [26] RODRÍGUEZ-MILLÁN M, VAZ-ROMERO Á, ARIAS Á. Failure behavior of 2024-T3 aluminum under tension-torsion conditions [J]. Journal of Mechanical Science and Technology, 2015, 29(11): 4657 − 4663. doi: 10.1007/s12206-015-1011-3
    [27] 张涛, 徐治平, 朱学康, 等. 泡沫铝填充薄壁结构吸能分析[J]. 舰船科学技术, 2007, 29(2): 52 − 56.

    ZHANG Tao, XU Zhiping, ZHU Xuekang, et al. Dynamic crushing of thin-walled extrusions filled with aluminium-foam [J]. Ship Science and Technology, 2007, 29(2): 52 − 56. (in Chinese)
    [28] MOHOTTI D, ALI M, NGO T, et al. Out-of-plane impact resistance of aluminium plates subjected to low velocity impacts [J]. Materials & Design, 2013, 50: 413 − 426.
    [29] 潘丹, 郭彦峰, 付云岗, 等. 纸夹芯和泡沫复合层状结构的静态缓冲吸能特性研究[J]. 工程力学, 2019, 36(2): 249 − 256. doi: 10.6052/j.issn.1000-4750.2017.11.0888

    PAN Dan, GUO Yanfeng, FU Yungang, et al. Static cushioning and energy absorption of composite layered structures with paper sandwich core and plastic foam [J]. Engineering Mechanics, 2019, 36(2): 249 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0888
    [30] 吉美娟, 郭彦峰, 付云岗, 等. 纸瓦楞-蜂窝复合夹层结构的跌落冲击缓冲性能研究[J]. 工程力学, 2020, 37(10): 247 − 256. doi: 10.6052/j.issn.1000-4750.2019.11.0668

    JI Meijuan, GUO Yanfeng, FU Yungang, et al. Study on drop impact cushioning performance of paper corrugated-honeycomb composite sandwich structure [J]. Engineering Mechanics, 2020, 37(10): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0668
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  46
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 修回日期:  2022-10-10
  • 录用日期:  2022-10-14
  • 网络出版日期:  2022-10-29
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回