留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RC梁构件基于能量的抗震设计方法研究

王玉奎 刘哲锋 张丹 胡张齐

王玉奎, 刘哲锋, 张丹, 胡张齐. RC梁构件基于能量的抗震设计方法研究[J]. 工程力学, 2023, 40(11): 218-226. doi: 10.6052/j.issn.1000-4750.2022.04.0278
引用本文: 王玉奎, 刘哲锋, 张丹, 胡张齐. RC梁构件基于能量的抗震设计方法研究[J]. 工程力学, 2023, 40(11): 218-226. doi: 10.6052/j.issn.1000-4750.2022.04.0278
WANG Yu-kui, LIU Zhe-feng, ZHANG Dan, HU Zhang-qi. RESEARCH ON ENERGY BASED SEISMIC DESIGN METHOD OF RC BEAM MEMBERS[J]. Engineering Mechanics, 2023, 40(11): 218-226. doi: 10.6052/j.issn.1000-4750.2022.04.0278
Citation: WANG Yu-kui, LIU Zhe-feng, ZHANG Dan, HU Zhang-qi. RESEARCH ON ENERGY BASED SEISMIC DESIGN METHOD OF RC BEAM MEMBERS[J]. Engineering Mechanics, 2023, 40(11): 218-226. doi: 10.6052/j.issn.1000-4750.2022.04.0278

RC梁构件基于能量的抗震设计方法研究

doi: 10.6052/j.issn.1000-4750.2022.04.0278
基金项目: 国家自然科学基金项目(50908022);湖南省自然科学基金项目(2022JJ40023);湖南省教育厅科研项目(20C0363,18C0837)
详细信息
    作者简介:

    王玉奎(1989−),男,河南人,讲师,博士,主要从事结构抗震研究(E-mail: 1219464373@qq.com)

    张 丹(1989−),女,河北人,讲师,博士,主要从事结构抗震研究(E-mail: 601041777@qq.com)

    胡张齐(1986−),男,湖北人,讲师,博士,主要从事结构抗震研究(E-mail: 279950700@qq.com)

    通讯作者:

    刘哲锋(1976−),男,湖南人,副教授,博士,硕导,主要从事结构抗震研究(E-mail: Lzf0072006@163.com)

  • 中图分类号: TU375.1

RESEARCH ON ENERGY BASED SEISMIC DESIGN METHOD OF RC BEAM MEMBERS

  • 摘要: 为研究RC梁构件基于能量的抗震设计方法,需建立一个合理的损伤指数来量化损伤。课题组前期建立了RC梁构件耗能能力与位移幅值、累积耗能和设计参数的量值关系,并提出了RC梁构件基于耗能能力的损伤指数和性能指标限值。该文在既有研究基础上提出RC梁构件基于耗能能力损伤指数的抗震设计方法。研究表明:该抗震设计方法与结构设计参数和地震参数建立了量值联系,从而便于指导结构设计;配箍率的增加可以降低RC梁构件的损伤,减损效果先急后缓;持时的增加可加剧RC梁构件损伤的发展,增加效果先快后慢;配筋率的增加可以从整体上降低RC梁构件的损伤;该抗震设计方法可以弥补现行建筑抗震设计规范中未能考虑持时效应的不足。
  • 图  1  主要参数示意图

    Figure  1.  Schematic diagram of main parameters

    图  2  RC梁构件配筋参数和总累积耗能对损伤指数Dk的影响规律

    Figure  2.  The influence of reinforcement parameters of RC beam members and total cumulative energy dissipation capacity on damage index Dk

    图  3  试件的损伤发展过程

    Figure  3.  The damage development process of specimen

    图  4  RC梁构件基于损伤指数Dk的抗震设计流程图

    Figure  4.  The seismic design flow chart of RC beam members based on the damage index Dk

    图  5  单自由度结构体系模型 /mm

    Figure  5.  Single degree of freedom structural system model

    图  6  结构的目标性能点

    Figure  6.  Target performance point of the structure

    图  7  基于损伤指数抗震设计方法的配箍率计算结果

    Figure  7.  Calculation results of stirrup ratio of seismic design method based on the damage index

    图  8  不同延性系数的Dksv-td关系图

    Figure  8.  Dksv-td relationship diagram under different ductility coefficients

    表  1  RC梁构件基于损伤指数Dk的性能指标限值

    Table  1.   The performance index limits of RC beam members based on the damage index Dk

    编号性能指标限值损伤现象(简述)损伤阶段性能
    1(0,0.4]表面无明显可见裂缝无损伤
    阶段
    不坏
    2(0.4,0.6]出现多条裂缝轻度损伤阶段可修
    3(0.6,0.7]前期裂缝发展,呈现四周贯通现象中度损伤阶段
    4(0.7,0.8]单向斜裂缝发展为交叉型的双向斜裂缝重度损伤阶段不倒
    5(0.8,1]核心混凝土压碎,纵筋出现屈曲破坏阶段倒塌
    下载: 导出CSV

    表  2  RC梁端的配筋及相关设计参数的计算结果

    Table  2.   Calculation results of reinforcement of RC beam ends and related design parameters

    梁端配筋
    位置
    梁端纵筋
    配置
    梁端箍筋
    配置ρsv/(%)
    结构
    质量
    m/kg
    自振
    周期
    T/s
    屈服弯矩
    My/(kN·mm)
    屈服位移角
    θy/rad
    上端5208@100
    (0.502)
    83 0100.343157 0000.0086
    下端220
    下载: 导出CSV

    表  3  罕遇地震和设防地震下的延性系数

    Table  3.   Ductility coefficient of RC members under rare earthquake and fortified earthquake

    地震类别 目标性能点处
    谱位移Sdm/m
    屈服位移处
    谱位移Sdy/m
    延性系数μ
    罕遇地震0.0300.01382.17
    设防地震0.0180.01381.30
    下载: 导出CSV

    表  4  性能指标限值与抗震规范中4个性能水准的延性系数限值对应关系

    Table  4.   Corresponding relationship between performance index limit and ductility coefficient limit of four performance levels in seismic code

    损伤阶段无损伤轻度损伤中度损伤重度损伤破坏
    性能指标限值(0,0.4](0.4,0.6](0.6,0.7](07,0.8](0.8,1]
    规范中延性系数限值μ<1μ<1.5μ≈2μ≈5μ>5
    下载: 导出CSV
  • [1] 白久林, 陈辉明, 孙博豪, 等. RC框架结构地震均匀损伤优化设计[J]. 工程力学, 2020, 37(8): 179 − 188. doi: 10.6052/j.issn.1000-4750.2019.10.0572

    BAI Jiulin, CHEN Huiming, SUN Bohao, et al. Seismic uniform damage-targeted design of RC frame structures [J]. Engineering Mechanics, 2020, 37(8): 179 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0572
    [2] 韩建平, 程诗焱, 于晓辉, 等. 地震动持时对RC框架结构易损性与抗震性能影响[J]. 建筑结构学报, 2021, 42(11): 116 − 127. doi: 10.14006/j.jzjgxb.2019.0677

    HAN Jianping, CHENG Shiyan, YU Xiaohui, et al. Effect of ground motion duration on fragility and seismic performance of RC frame structures [J]. Journal of Building Structures, 2021, 42(11): 116 − 127. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0677
    [3] SUN P Y, ZHAI C H, WEN W P. Experimental investigation on the damage accumulation of reinforced concrete columns under mainshock-aftershock sequences [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(15): 4142 − 4160.
    [4] 周洲, 于晓辉, 吕大刚. 主余震序列作用下结构增量损伤比研究[J]. 工程力学, 2021, 38(11): 147 − 159. doi: 10.6052/j.issn.1000-4750.2020.11.0791

    ZHOU Zhou, YU Xiaohui, LYU Dagang. Study on incremental damage ratios of structures due to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2021, 38(11): 147 − 159. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0791
    [5] 王建宁, 徐建, 潘鹏, 等. 主余震作用下地下结构增量损伤与抗震性能分析 [J]. 工程力学, 2022, doi: 10.6052/j.issn.1000-4750.2022.02.0194.

    WANG Jianning, XU Jian, PAN Peng, et al. Seismic performance and incremental damage analysis of underground structures under mainshock-aftershock earthquakes [J]. Engineering Mechanics, 2022, doi: 10.6052/j.issn.1000-4750.2022.02.0194. (in Chinese)
    [6] BHANU V, CHANDRAMOHAN R, SULLIVAN T J. Influence of ground motion duration on the dynamic deformation capacity of reinforced concrete frame structures [J]. Earthquake Spectra, 2021, 37(4): 2622 − 2637. doi: 10.1177/87552930211033879
    [7] MARAFI N A, BERMAN J W, EBERHARD M O. Ductility-dependent intensity measure that accounts for ground-motion spectral shape and duration [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(4): 653 − 672.
    [8] IERVOLINO I, MANFREDI G, COSENZA E. Ground motion duration effects on nonlinear seismic response [J]. Earthquake Engineering & Structural Dynamics, 2006, 35(1): 21 − 38.
    [9] 乔保娟, 肖从真, 杨志勇. 基于构件损伤状态的复杂建筑抗震韧性评价方法研究 [J]. 工程力学, 2022, doi: 10.6052/j.issn.1000-4750.2022.01.0100.

    QIAO Baojuan, XIAO Congzhen, YANG Zhiyong. Research on seismic resilience assessment method of complex buildings based on component damage states [J]. Engineering Mechanics, 2022, doi: 10.6052/j.issn.1000-4750.2022.01.0100. (in Chinese)
    [10] 孙小云, 韩建平, 黄林杰. 基于不同规范设计的现役RC框架损伤分析及可修复性能评估[J]. 工程力学, 2023, 40(3): 117 − 128. doi: 10.6052/j.issn.1000-4750.2021.09.0702

    SUN Xiaoyun, HAN Jianping, HUANG Linjie. Damage analyses and repairability evaluation of in-service RC frames designed based on different codes [J]. Engineering Mechanics, 2023, 40(3): 117 − 128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.09.0702
    [11] LU X Z, XU Y J, TIAN Y, et al. A deep learning approach to rapid regional post-event seismic damage assessment using time-frequency distributions of ground motions [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1612 − 1627.
    [12] AKIYAMA H. Earthquake-resistant limit-state design for buildings [M]. Tokyo: University of Tokyo Press, 1985.
    [13] PARK Y J, ANG A H S. Mechanistic seismic damage model for reinforced concrete [J]. Journal of Structural Engineering, 1985, 111(4): 722 − 739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
    [14] PARK Y J, ANG A H S, WEN Y K. Seismic damage analysis of reinforced concrete buildings [J]. Journal of Structural Engineering, 1985, 111(4): 740 − 757. doi: 10.1061/(ASCE)0733-9445(1985)111:4(740)
    [15] FAJFAR P. Equivalent ductility factors, taking into account low-cycle fatigue [J]. Earthquake Engineering & Structural Dynamics, 1992, 21(10): 837 − 848.
    [16] CHAI Y H, FAJFAR P, ROMSTAD K M. Formulation of duration-dependent inelastic seismic design spectrum [J]. Journal of Structural Engineering, 1998, 124(8): 913 − 921. doi: 10.1061/(ASCE)0733-9445(1998)124:8(913)
    [17] 叶列平, 缪志伟, 程光煜, 等. 建筑结构基于能量抗震设计方法研究[J]. 工程力学, 2014, 31(6): 1 − 12, 20. doi: 10.6052/j.issn.1000-4750.2013.05.0388

    YE Lieping, MIAO Zhiwei, CHENG Guangyu, et al. Study on the energy-based seismic design method of building structures [J]. Engineering Mechanics, 2014, 31(6): 1 − 12, 20. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0388
    [18] 缪志伟, 马千里, 叶列平. 钢筋混凝土框架结构基于能量抗震设计方法研究[J]. 建筑结构学报, 2013, 34(12): 1 − 10. doi: 10.14006/j.jzjgxb.2013.12.002

    MIAO Zhiwei, MA Qianli, YE Lieping. Study on energy-based seismic design method of reinforced concrete frame structures [J]. Journal of Building Structures, 2013, 34(12): 1 − 10. (in Chinese) doi: 10.14006/j.jzjgxb.2013.12.002
    [19] YAGHMAEI-SABEGH S, MAKAREMI S. Development of duration-dependent damage-based inelastic response spectra [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(5): 771 − 789.
    [20] 刘哲锋, 王玉奎, 杨伟军, 等. 对称配筋钢筋混凝土构件基于耗能能力退化的损伤模型与性能标准[J]. 建筑结构学报, 2020, 41(9): 145 − 153. doi: 10.14006/j.jzjgxb.2018.0595

    LIU Zhefeng, WANG Yukui, YANG Weijun, et al. Damage model based on degradation of energy dissipation capacity and performance level of symmetrical reinforced RC members [J]. Journal of Building Structures, 2020, 41(9): 145 − 153. (in Chinese) doi: 10.14006/j.jzjgxb.2018.0595
    [21] SHEN J, AKBAŞ B. Seismic energy demand in steel moment frames [J]. Journal of Earthquake Engineering, 1999, 3(4): 519 − 559.
    [22] AKBAS B, SHEN J, HAO H. Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective [J]. The Structural Design of Tall Buildings, 2001, 10(3): 193 − 217. doi: 10.1002/tal.172
    [23] CHOU C C, UANG C M. A procedure for evaluating seismic energy demand of framed structures [J]. Earthquake Engineering & Structural Dynamics, 2003, 32(2): 229 − 244.
    [24] LIU Z F, WANG Y K, CAO Z X, et al. Seismic energy dissipation under variable amplitude loading for rectangular RC members in flexure [J]. Earthquake Engineering & Structural Dynamics, 2018, 47(4): 831 − 853.
    [25] WANG Y K, LIU Z F, YANG W J, et al. Damage index of reinforced concrete members based on the energy dissipation capability degradation [J]. The Structural Design of Tall and Special Buildings, 2020, 29(2): e1695.
    [26] 党争, 梁兴文, 李坤, 等. 基于屈服点谱的钢筋混凝土框架-剪力墙结构抗震设计[J]. 土木工程学报, 2015, 48(6): 25 − 35. doi: 10.15951/j.tmgcxb.2015.06.004

    DANG Zheng, LIANG Xingwen, LI Kun, et al. Seismic design of reinforced concrete frame-shear wall structure based on yield point spectra [J]. China Civil Engineering Journal, 2015, 48(6): 25 − 35. (in Chinese) doi: 10.15951/j.tmgcxb.2015.06.004
    [27] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [28] KUNNATH S K, CHAI Y H. Cumulative damage-based inelastic cyclic demand spectrum [J]. Earthquake Engineering & Structural Dynamics, 2004, 33(4): 499 − 520.
    [29] FAJFAR P, VIDIC T. Consistent inelastic design spectra: Hysteretic and input energy [J]. Earthquake Engineering & Structural Dynamics, 1994, 23(5): 523 − 537.
    [30] VIDIC T, FAJFAR P, FISCHINGER M. Consistent inelastic design spectra: Strength and displacement [J]. Earthquake Engineering & Structural Dynamics, 1994, 23(5): 507 − 521.
    [31] 刘哲锋, 王玉奎, 曹智雄, 等. 考虑地震持时的钢筋混凝土构件损伤性能指标研究[J]. 建筑结构学报, 2018, 39(12): 168 − 177. doi: 10.14006/j.jzjgxb.2018.12.020

    LIU Zhefeng, WANG Yukui, CAO Zhixiong, et al. Study on performance index of RC members considering effect of seismic duration [J]. Journal of Building Structures, 2018, 39(12): 168 − 177. (in Chinese) doi: 10.14006/j.jzjgxb.2018.12.020
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  31
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-08-15
  • 录用日期:  2023-02-28
  • 网络出版日期:  2023-03-11
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回