RESEARCH ON MECHANICAL PROPERTIES OF UHPC UNDER TRAXIAL COMPRESSION
-
摘要: 为了研究三轴受压下UHPC的受力性能,以围压大小和钢纤维掺量为试验参数,进行20组UHPC试件常规三轴试验,分析UHPC的破坏形态、应力-应变曲线、峰值应力和应变等力学性能。结果表明:围压和钢纤维掺量均为零的试件破坏时呈劈裂破坏,其他试件则呈剪切破坏;围压和钢纤维掺量对应力-应变曲线弹性模量和弹性段曲线形状影响较小;随着围压增大,峰值应力和应变呈不断增大趋势;随着钢纤维掺量增大,峰值应力和轴向峰值应变呈先增大后不变和先增大后减小趋势,环向峰值应变则呈增大趋势。通过对UHPC八面体正应力-体积应变和剪应力-剪应变关系进行分析,基于Drucker-Prager二参数准则,建立了UHPC八面体破坏准则计算方法。`Abstract: In order to study the mechanical performance of UHPC under triaxial compression, the conventional triaxial experiment was carried out to analyse the mechanical properties such as the failure modes, stress-strain curve, peak stress and strain by considering the confining pressure and steel fiber content as experimental parameters. The results show that: the specimens without confining pressure and steel fiber exhibit splitting failure, while the others exhibit shear failure. The elastic modulus and elastic segment curve shape of the stress-strain curves remain unchanged as confining pressure and steel fiber content change. With the increase of confining pressure, the peak stress and strain increase continuously. With the increase of steel fiber content, the peak stress increases firstly and then remains unchanged and the axial peak strain increases firstly and then decreases, while the hoop peak strain increases. Based on the Drucker-Prager two parameter criterion, the octahedron failure criterion calculation method of UHPC was established by analyzing its octahedron normal stress, volume strain relationship and, its octahedron shear stress and shear strain relationship.
-
表 1 UHPC常规三轴试验参数一览表
Table 1. List of UHPC conventional triaxial test parameters
试件编号 高度H
/mm直径D
/mm围压σ3
/MPa钢纤维掺量φf/(%) U0-0 100 50 0 0 U0-10 100 50 10 0 U0-20 100 50 20 0 U0-30 100 50 30 0 U0-40 100 50 40 0 U1-0 100 50 0 1 U1-10 100 50 10 1 U1-20 100 50 20 1 U1-30 100 50 30 1 U1-40 100 50 40 1 U2-0 100 50 0 2 U2-10 100 50 10 2 U2-20 100 50 20 2 U2-30 100 50 30 2 U2-40 100 50 40 2 U3-0 100 50 0 3 U3-10 100 50 10 3 U3-20 100 50 20 3 U3-30 100 50 30 3 U3-40 100 50 40 3 表 2 UHPC配合比一览表
Table 2. List of UHPC mix proportion
编号 水泥/
(kg/m3)硅灰/
(kg/m3)石英砂/
(kg/m3)减水剂/
(kg/m3)水/
(kg/m3)钢纤维掺量
φf/(%)1 859.5 257.9 1005.7 21.5 178.8 0 2 850.9 255.3 995.6 21.3 177.0 1 3 842.4 252.7 985.6 21.1 175.2 2 4 833.8 250.1 975.5 20.9 173.4 3 表 3 试验结果一览表
Table 3. Experimental results list
序号 试件编号 $\sigma _1^{\rm{u}} $/MPa $\varepsilon _1^{\rm{u}} $/(%) $\varepsilon _3^{\rm{u}} $/(%) $\sigma _{{\rm{oct}}}^{\rm{u}}$/MPa $V_{{\rm{oct}}}^{\rm{u}}$/(%) $\tau _{{\rm{oct}}}^{\rm{u}}$/MPa $\gamma _{{\rm{oct}}}^{\rm{u}}$/(%) 1 U0-0 172 0.400 0.141 57 0.117 81 0.510 2 U0-10 197 0.459 0.164 66 0.131 93 0.587 3 U0-20 199 0.540 0.170 61 0.010 91 0.669 4 U0-30 212 0.536 0.212 71 0.112 100 0.705 5 U0-40 228 0.539 0.280 76 −0.020 108 0.772 6 U1-0 180 0.466 0.201 60 0.064 85 0.629 7 U1-10 232 0.587 0.232 73 0.028 104 0.857 8 U1-20 248 0.672 0.247 83 0.185 117 0.859 9 U1-30 264 0.710 0.284 88 0.089 124 0.937 10 U1-40 274 0.781 0.309 91 0.087 129 1.126 11 U2-0 186 0.411 0.245 60 −0.080 85 0.619 12 U2-10 237 0.627 0.263 79 0.100 106 1.182 13 U2-20 256 0.716 0.291 85 0.134 121 0.950 14 U2-30 263 0.755 0.342 88 0.070 124 1.035 15 U2-40 280 0.777 0.360 93 0.056 132 1.072 16 U3-0 180 0.410 0.306 60 −0.202 85 0.674 17 U3-10 234 0.628 0.353 78 −0.079 111 0.925 18 U3-20 255 0.670 0.346 83 −0.069 120 0.958 19 U3-30 265 0.738 0.358 88 −0.004 125 1.033 20 U3-40 282 0.772 0.363 90 0.046 128 1.070 注:$\sigma _1^{\rm{u}} $为轴向峰值应力;$\varepsilon _1^{\rm{u}} $为轴向峰值应变;$\varepsilon _3^{\rm{u}} $为环向峰值应变;$\sigma _{_{{\rm{oct}}} }^{\rm{u }}$为八面体峰值正应力;$V_ {\rm{oct} } ^\rm{u}$为八面体峰值体积应变;$\tau _{_{{\rm{oct}}} }^{\rm{u}}$为八面体峰值剪应力;$\gamma _{{\rm{oct}}}^{\rm{u}}$为八面体峰值剪应变。 -
[1] 韦建刚, 罗霞, 陈宝春, 等. 圆高强钢管UHPC梁抗弯性能研究[J]. 工程力学, 2021, 38(1): 183 − 194. doi: 10.6052/j.issn.1000-4750.2020.03.0158WEI Jiangang, LUO Xia, CHEN Baochun, et al. Study on bending behavior of circular UHPC filled high strength steel tube beams [J]. Engineering Mechanics, 2021, 38(1): 183 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0158 [2] 伍凯, 刘晓艺, 陈峰, 等. 不同荷载条件下型钢-钢纤维混凝土组合结构的界面失效机理研究[J]. 工程力学, 2021, 38(2): 110 − 121. doi: 10.6052/j.issn.1000-4750.2020.04.0206WU Kai, LIU Xiaoyi, CHEN Feng, et al. Study on interfacial failure mechanism of steel and steel fiber reinforced concrete composite structure under different loading conditions [J]. Engineering Mechanics, 2021, 38(2): 110 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0206 [3] WEI J G, LUO X, LAI Z C, et al. Experimental behavior and design of high-strength circular concrete-filled steel tube short columns [J]. Journal of Structural and Construction Engineering, 2020, 146(1): 04019184. doi: 10.1061/(ASCE)ST.1943-541X.0002474 [4] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3): 1 − 14.GUO Zhenhai, WANG Chuanzhi. Investigation of strength and failure criterion of concrete under multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1 − 14. (in Chinese) [5] 宋玉普, 赵国藩, 彭放, 等. 多轴应力下多种混凝土材料的通用破坏准则[J]. 土木工程学报, 1996, 29(1): 25 − 32.SONG Yupu, ZHAO Guofan, PENG Fang, et al. General failure criterion for different concrete materials under multiaxial stresses [J]. China Civil Engineering Journal, 1996, 29(1): 25 − 32. (in Chinese) [6] 丁发兴, 吴霞, 向平, 等. 混凝土与各向同性岩石强度理论研究进展[J]. 工程力学, 2020, 37(2): 1 − 15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07DING Faxing, WU Xia, XIANG Ping, et al. Reviews on strength theories of concrete and isotropic rock [J]. Engineering Mechanics, 2020, 37(2): 1 − 15. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST07 [7] KUPFER H B, HILSDORF K H, RUSH H. Behavior of concrete under biaxial stresses [J]. Journal of the Engineering Mechanics Division, 1969, 99(8): 853 − 866. [8] WANG C Z, GUO Z H, ZHANG X Q. Experimental investigation of biaxial and triaxial compressive concrete strength [J]. ACI Materials Journal, 1987, 3(2): 92 − 100. [9] SFER D, CAROLAROL I, GETTU R, et al. Study of the behavior of concrete under triaxial compression [J]. Journal of Engineering Mechanics, 2002, 128(2): 156 − 163. doi: 10.1061/(ASCE)0733-9399(2002)128:2(156) [10] SIRIJAROONCHAI K, EL-TAWIL S, PARRA-MONTESINOS G. Behavior of high-performance fiber reinforced cement composites under multi-axial compressive loading [J]. Cement and Concrete Composites, 2010, 32(1): 62 − 72. doi: 10.1016/j.cemconcomp.2009.09.003 [11] CHERN J C, YANG H J, CHEN H W. Behavior of steel fiber reinforced concrete in multiaxial loading [J]. ACI Materials Journal, 1993, 89(1): 32 − 40. [12] LU X, HSU C T T. Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression [J]. Cement and Concrete Research, 2006, 36(9): 1679 − 1685. doi: 10.1016/j.cemconres.2006.05.021 [13] HE Z J, SONG Y P. Multiaxial tensile-compressive strengths and failure criterion of plain high-performance concrete before and after high temperatures [J]. Construction and Building Materials, 2010, 24(4): 498 − 504. doi: 10.1016/j.conbuildmat.2009.10.012 [14] 周甲佳, 潘金龙, 姚少科, 等. 高强高性能混凝土三轴拉压压力学性能试验研究[J]. 工程力学, 2018, 35(4): 144 − 150. doi: 10.6052/j.issn.1000-4750.2017.01.0008ZHOU Jiajia, PAN Jinlong, YAO Shaoke, et al. Experimental study on the mechanical behavior of high strength and high-performance concrete under triaxial compressive-tensile loading [J]. Engineering Mechanics, 2018, 35(4): 144 − 150. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0008 [15] ANSARI F, LI Q B. High strength concrete subjected to triaxial compression [J]. ACI Materials Journal, 1998, 95(6): 747 − 755. [16] LI Q B, ANSARI F. Mechanics of damage and constitutive relationships for high-strength concrete in triaxial compression [J]. Journal of Engineering Mechanics, 1999, 125(1): 1 − 10. doi: 10.1061/(ASCE)0733-9399(1999)125:1(1) [17] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122 − 132. doi: 10.6052/j.issn.1000-4750.2018.07.0401WANG Huailiang. Strength and deformation properties of high performance steel fiber reinforcement lightweight concrete under multiaxial compression [J]. Engineering Mechanics, 2019, 36(8): 122 − 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0401 [18] XUE J Q, BRISEGHELLA B, HUANG F Y, et al. Review of ultra-high-performance concrete and its application in bridge engineering [J]. Construction and Building Materials, 2020, 260: 119844. [19] XU S C, WU P T, WU C Q. Calibration of KRCC concrete model for UHPC against low-velocity impact [J]. International Journal of Impact Engineering, 2020, 144: 103648. [20] WANG Y Z, WANG Y B, ZHAO Y Z, et al. Experimental study on ultra-high performance concrete under triaxial compression [J]. Construction and Building Materials, 2020, 263: 120225. [21] REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1 − 14. [22] VOGEL F, SOVJAK R, JOGL M. Experimental tests of the UHPC in triaxial compression [J]. Applied Mechanics and Materials, 2014, 486: 78 − 83. [23] 余自若, 秦鑫, 安明喆. 活性粉末混凝土的常规三轴压缩性能试验研究[J]. 铁道学报, 2012, 33(2): 38 − 42.YU Ziruo, QIN Xin, AN Mingzhe. Mechanical properties of reactive powder concrete under triaxial compression [J]. Journal of the China Railway Society, 2012, 33(2): 38 − 42. (in Chinese) [24] 吴礼程, 王哲, 刘迪, 等. 围压及钢纤维掺量对活性粉末混凝土力学特性的影响[J]. 建筑材料学报, 2018, 21(2): 208 − 215. doi: 10.3969/j.issn.1007-9629.2018.02.006WU Licheng, WANG Ze, LIU Di, et al. Effect of confining pressure and steel fiber volume content on mechanical property of reactive powder concrete [J]. Journal of Building Materials, 2018, 21(2): 208 − 215. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.02.006 [25] RICHARD L J Y, XIONG D X. Ultra-high strength concrete filled composite columns for multi-storey building construction [J]. Advances in Structural Engineering, 2012, 15(9): 1487 − 1504. doi: 10.1260/1369-4332.15.9.1487 [26] LUO H, WANG W, LIAN S, et al. Stress-strain model for reactive powder concrete confined by steel tube [J]. Journal of Engineering Science and Technology Review, 2017, 10(2): 122 − 131. doi: 10.25103/jestr.102.15 [27] 过镇海. 混凝土的强度和变形[M]. 北京: 清华大学出版社, 1997.GUO Zhenhai. Strength and deformation of concrete, experimental foundation and constitutive relations [M]. Beijing: Tsinghua University Press, 1997. (in Chinese) [28] IMRAN I, PANTAZOPOULOU S J. Experimental study of plain concrete under triaxial stress [J]. ACI Materials Journal, 1996, 93(6): 589 − 601. [29] CANDAPPA D P, SANJAYAN J G, SETUNGE S. Complete triaxial stress-strain curves of high-strength concrete [J]. Journal of Materials in Civil Engineering, 2001, 13(3): 209 − 215. doi: 10.1061/(ASCE)0899-1561(2001)13:3(209) [30] VU X H, MALECOT Y, DAUDEVILIE L, et al. Experimental analysis of concrete behavior under high confinement: effect of the saturation ratio [J]. International Journal of Solids and Structures, 2009, 46(5): 1105 − 1120. doi: 10.1016/j.ijsolstr.2008.10.015 -