留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UHPC三轴受压力学性能研究

周俊 韦建刚 杨艳 陈宝春 黄颖

周俊, 韦建刚, 杨艳, 陈宝春, 黄颖. UHPC三轴受压力学性能研究[J]. 工程力学, 2023, 40(11): 206-217, 226. doi: 10.6052/j.issn.1000-4750.2022.03.0259
引用本文: 周俊, 韦建刚, 杨艳, 陈宝春, 黄颖. UHPC三轴受压力学性能研究[J]. 工程力学, 2023, 40(11): 206-217, 226. doi: 10.6052/j.issn.1000-4750.2022.03.0259
ZHOU Jun, WEI Jian-gang, YANG Yan, CHEN Bao-chun, HUANG Ying. RESEARCH ON MECHANICAL PROPERTIES OF UHPC UNDER TRAXIAL COMPRESSION[J]. Engineering Mechanics, 2023, 40(11): 206-217, 226. doi: 10.6052/j.issn.1000-4750.2022.03.0259
Citation: ZHOU Jun, WEI Jian-gang, YANG Yan, CHEN Bao-chun, HUANG Ying. RESEARCH ON MECHANICAL PROPERTIES OF UHPC UNDER TRAXIAL COMPRESSION[J]. Engineering Mechanics, 2023, 40(11): 206-217, 226. doi: 10.6052/j.issn.1000-4750.2022.03.0259

UHPC三轴受压力学性能研究

doi: 10.6052/j.issn.1000-4750.2022.03.0259
基金项目: 国家自然科学基金项目(51878172);福建省中青年教师教育科研项目(科技类)(JAT210707)
详细信息
    作者简介:

    周 俊(1991−),女,江西人,讲师,博士,主要从事拱桥与组合桥梁研究(E-mail: zjun.zj@qq.com)

    杨 艳(1979−),女,福建人,副研究员,博士,硕导,主要从事组合结构、拱结构等研究(E-mail: yangyan@fzu.edu.cn)

    陈宝春(1958−),男,福建人,教授,博士,博导,主要从事拱桥研究(E-mail: baochunchen@fzu.edu.cn)

    黄 颖(1982−),女,福建人,副教授,博士,主要从事桥梁结构检测和加固方法研究(E-mail: huangying6820@163.com)

    通讯作者:

    韦建刚(1971−),男,广西人,研究员,博士,博导,主要从事拱桥计算理论、新型组合结构受力性能等研究(E-mail: weijg@fzu.edu.cn)

  • 中图分类号: TU528.31

RESEARCH ON MECHANICAL PROPERTIES OF UHPC UNDER TRAXIAL COMPRESSION

  • 摘要: 为了研究三轴受压下UHPC的受力性能,以围压大小和钢纤维掺量为试验参数,进行20组UHPC试件常规三轴试验,分析UHPC的破坏形态、应力-应变曲线、峰值应力和应变等力学性能。结果表明:围压和钢纤维掺量均为零的试件破坏时呈劈裂破坏,其他试件则呈剪切破坏;围压和钢纤维掺量对应力-应变曲线弹性模量和弹性段曲线形状影响较小;随着围压增大,峰值应力和应变呈不断增大趋势;随着钢纤维掺量增大,峰值应力和轴向峰值应变呈先增大后不变和先增大后减小趋势,环向峰值应变则呈增大趋势。通过对UHPC八面体正应力-体积应变和剪应力-剪应变关系进行分析,基于Drucker-Prager二参数准则,建立了UHPC八面体破坏准则计算方法。`
  • 图  1  岩石三轴测试系统主要装置照

    Figure  1.  Main device photo of rock triaxial testing system

    图  2  荷载加载路径图

    Figure  2.  Load path diagram

    图  3  试件装样照

    Figure  3.  Specimen photo

    图  4  试件破坏形态图

    Figure  4.  Specimen failure mode

    图  5  围压为10 MPa时不同钢纤维掺量试件破坏形态图

    Figure  5.  Specimen failure patterns of different steel fiber content with the confining pressure of 10 MPa

    图  6  不同围压UHPC应力-应变曲线对比图

    Figure  6.  Comparison of stress-strain curves of UHPC with different confining pressure

    图  7  不同钢纤维掺量UHPC应力-应变曲线对比图

    Figure  7.  Comparison of stress-strain curves of UHPC with different steel fiber content

    图  8  围压大小对峰值应力影响图

    Figure  8.  Effect of confining pressure on peak stress

    图  9  围压对峰值应变影响图

    Figure  9.  Effect of confining pressure on peak strain

    图  10  钢纤维掺量对轴向峰值应力影响图

    Figure  10.  Effect of steel fiber content on axial peak stress

    图  11  钢纤维掺量对峰值应变影响图

    Figure  11.  Effect of steel fiber content on peak strain

    图  12  不同围压八面体正应力-体积应变曲线图

    Figure  12.  Octahedral normal stress-volumetric strain curves with different confining pressure

    图  13  不同钢纤维掺量下八面体正应力-体积应变曲线图

    Figure  13.  Octahedral normal stress-volumetric strain curves with different fiber content

    图  14  不同围压八面体剪应力-剪应变曲线图

    Figure  14.  Octahedral shear stress-shear strain curves with different confining pressure

    图  15  不同钢纤维掺量下八面体剪应力-剪应变曲线图

    Figure  15.  Octahedral shear stress-shear strain curves with different steel fiber content

    图  16  UHPC八面体峰值正应力与峰值剪应力关系

    Figure  16.  Octahedral peak normal stress and peak shear stress curves of UHPC

    表  1  UHPC常规三轴试验参数一览表

    Table  1.   List of UHPC conventional triaxial test parameters

    试件编号高度H
    /mm
    直径D
    /mm
    围压σ3
    /MPa
    钢纤维掺量φf/(%)
    U0-01005000
    U0-1010050100
    U0-2010050200
    U0-3010050300
    U0-4010050400
    U1-01005001
    U1-1010050101
    U1-2010050201
    U1-3010050301
    U1-4010050401
    U2-01005002
    U2-1010050102
    U2-2010050202
    U2-3010050302
    U2-4010050402
    U3-01005003
    U3-1010050103
    U3-2010050203
    U3-3010050303
    U3-4010050403
    下载: 导出CSV

    表  2  UHPC配合比一览表

    Table  2.   List of UHPC mix proportion

    编号水泥/
    (kg/m3)
    硅灰/
    (kg/m3)
    石英砂/
    (kg/m3)
    减水剂/
    (kg/m3)
    水/
    (kg/m3)
    钢纤维掺量
    φf/(%)
    1859.5257.91005.721.5178.80
    2850.9255.3995.621.3177.01
    3842.4252.7985.621.1175.22
    4833.8250.1975.520.9173.43
    下载: 导出CSV

    表  3  试验结果一览表

    Table  3.   Experimental results list

    序号试件编号$\sigma _1^{\rm{u}} $/MPa$\varepsilon _1^{\rm{u}} $/(%)$\varepsilon _3^{\rm{u}} $/(%)$\sigma _{{\rm{oct}}}^{\rm{u}}$/MPa$V_{{\rm{oct}}}^{\rm{u}}$/(%)$\tau _{{\rm{oct}}}^{\rm{u}}$/MPa$\gamma _{{\rm{oct}}}^{\rm{u}}$/(%)
    1U0-01720.4000.141570.117810.510
    2U0-101970.4590.164660.131930.587
    3U0-201990.5400.170610.010910.669
    4U0-302120.5360.212710.1121000.705
    5U0-402280.5390.28076−0.0201080.772
    6U1-01800.4660.201600.064850.629
    7U1-102320.5870.232730.0281040.857
    8U1-202480.6720.247830.1851170.859
    9U1-302640.7100.284880.0891240.937
    10U1-402740.7810.309910.0871291.126
    11U2-01860.4110.24560−0.080850.619
    12U2-102370.6270.263790.1001061.182
    13U2-202560.7160.291850.1341210.950
    14U2-302630.7550.342880.0701241.035
    15U2-402800.7770.360930.0561321.072
    16U3-01800.4100.30660−0.202850.674
    17U3-102340.6280.35378−0.0791110.925
    18U3-202550.6700.34683−0.0691200.958
    19U3-302650.7380.35888−0.0041251.033
    20U3-402820.7720.363900.0461281.070
    注:$\sigma _1^{\rm{u}} $为轴向峰值应力;$\varepsilon _1^{\rm{u}} $为轴向峰值应变;$\varepsilon _3^{\rm{u}} $为环向峰值应变;$\sigma _{_{{\rm{oct}}} }^{\rm{u }}$为八面体峰值正应力;$V_ {\rm{oct} } ^\rm{u}$为八面体峰值体积应变;$\tau _{_{{\rm{oct}}} }^{\rm{u}}$为八面体峰值剪应力;$\gamma _{{\rm{oct}}}^{\rm{u}}$为八面体峰值剪应变。
    下载: 导出CSV
  • [1] 韦建刚, 罗霞, 陈宝春, 等. 圆高强钢管UHPC梁抗弯性能研究[J]. 工程力学, 2021, 38(1): 183 − 194. doi: 10.6052/j.issn.1000-4750.2020.03.0158

    WEI Jiangang, LUO Xia, CHEN Baochun, et al. Study on bending behavior of circular UHPC filled high strength steel tube beams [J]. Engineering Mechanics, 2021, 38(1): 183 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0158
    [2] 伍凯, 刘晓艺, 陈峰, 等. 不同荷载条件下型钢-钢纤维混凝土组合结构的界面失效机理研究[J]. 工程力学, 2021, 38(2): 110 − 121. doi: 10.6052/j.issn.1000-4750.2020.04.0206

    WU Kai, LIU Xiaoyi, CHEN Feng, et al. Study on interfacial failure mechanism of steel and steel fiber reinforced concrete composite structure under different loading conditions [J]. Engineering Mechanics, 2021, 38(2): 110 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0206
    [3] WEI J G, LUO X, LAI Z C, et al. Experimental behavior and design of high-strength circular concrete-filled steel tube short columns [J]. Journal of Structural and Construction Engineering, 2020, 146(1): 04019184. doi: 10.1061/(ASCE)ST.1943-541X.0002474
    [4] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3): 1 − 14.

    GUO Zhenhai, WANG Chuanzhi. Investigation of strength and failure criterion of concrete under multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1 − 14. (in Chinese)
    [5] 宋玉普, 赵国藩, 彭放, 等. 多轴应力下多种混凝土材料的通用破坏准则[J]. 土木工程学报, 1996, 29(1): 25 − 32.

    SONG Yupu, ZHAO Guofan, PENG Fang, et al. General failure criterion for different concrete materials under multiaxial stresses [J]. China Civil Engineering Journal, 1996, 29(1): 25 − 32. (in Chinese)
    [6] 丁发兴, 吴霞, 向平, 等. 混凝土与各向同性岩石强度理论研究进展[J]. 工程力学, 2020, 37(2): 1 − 15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07

    DING Faxing, WU Xia, XIANG Ping, et al. Reviews on strength theories of concrete and isotropic rock [J]. Engineering Mechanics, 2020, 37(2): 1 − 15. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST07
    [7] KUPFER H B, HILSDORF K H, RUSH H. Behavior of concrete under biaxial stresses [J]. Journal of the Engineering Mechanics Division, 1969, 99(8): 853 − 866.
    [8] WANG C Z, GUO Z H, ZHANG X Q. Experimental investigation of biaxial and triaxial compressive concrete strength [J]. ACI Materials Journal, 1987, 3(2): 92 − 100.
    [9] SFER D, CAROLAROL I, GETTU R, et al. Study of the behavior of concrete under triaxial compression [J]. Journal of Engineering Mechanics, 2002, 128(2): 156 − 163. doi: 10.1061/(ASCE)0733-9399(2002)128:2(156)
    [10] SIRIJAROONCHAI K, EL-TAWIL S, PARRA-MONTESINOS G. Behavior of high-performance fiber reinforced cement composites under multi-axial compressive loading [J]. Cement and Concrete Composites, 2010, 32(1): 62 − 72. doi: 10.1016/j.cemconcomp.2009.09.003
    [11] CHERN J C, YANG H J, CHEN H W. Behavior of steel fiber reinforced concrete in multiaxial loading [J]. ACI Materials Journal, 1993, 89(1): 32 − 40.
    [12] LU X, HSU C T T. Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression [J]. Cement and Concrete Research, 2006, 36(9): 1679 − 1685. doi: 10.1016/j.cemconres.2006.05.021
    [13] HE Z J, SONG Y P. Multiaxial tensile-compressive strengths and failure criterion of plain high-performance concrete before and after high temperatures [J]. Construction and Building Materials, 2010, 24(4): 498 − 504. doi: 10.1016/j.conbuildmat.2009.10.012
    [14] 周甲佳, 潘金龙, 姚少科, 等. 高强高性能混凝土三轴拉压压力学性能试验研究[J]. 工程力学, 2018, 35(4): 144 − 150. doi: 10.6052/j.issn.1000-4750.2017.01.0008

    ZHOU Jiajia, PAN Jinlong, YAO Shaoke, et al. Experimental study on the mechanical behavior of high strength and high-performance concrete under triaxial compressive-tensile loading [J]. Engineering Mechanics, 2018, 35(4): 144 − 150. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0008
    [15] ANSARI F, LI Q B. High strength concrete subjected to triaxial compression [J]. ACI Materials Journal, 1998, 95(6): 747 − 755.
    [16] LI Q B, ANSARI F. Mechanics of damage and constitutive relationships for high-strength concrete in triaxial compression [J]. Journal of Engineering Mechanics, 1999, 125(1): 1 − 10. doi: 10.1061/(ASCE)0733-9399(1999)125:1(1)
    [17] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122 − 132. doi: 10.6052/j.issn.1000-4750.2018.07.0401

    WANG Huailiang. Strength and deformation properties of high performance steel fiber reinforcement lightweight concrete under multiaxial compression [J]. Engineering Mechanics, 2019, 36(8): 122 − 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0401
    [18] XUE J Q, BRISEGHELLA B, HUANG F Y, et al. Review of ultra-high-performance concrete and its application in bridge engineering [J]. Construction and Building Materials, 2020, 260: 119844.
    [19] XU S C, WU P T, WU C Q. Calibration of KRCC concrete model for UHPC against low-velocity impact [J]. International Journal of Impact Engineering, 2020, 144: 103648.
    [20] WANG Y Z, WANG Y B, ZHAO Y Z, et al. Experimental study on ultra-high performance concrete under triaxial compression [J]. Construction and Building Materials, 2020, 263: 120225.
    [21] REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1 − 14.
    [22] VOGEL F, SOVJAK R, JOGL M. Experimental tests of the UHPC in triaxial compression [J]. Applied Mechanics and Materials, 2014, 486: 78 − 83.
    [23] 余自若, 秦鑫, 安明喆. 活性粉末混凝土的常规三轴压缩性能试验研究[J]. 铁道学报, 2012, 33(2): 38 − 42.

    YU Ziruo, QIN Xin, AN Mingzhe. Mechanical properties of reactive powder concrete under triaxial compression [J]. Journal of the China Railway Society, 2012, 33(2): 38 − 42. (in Chinese)
    [24] 吴礼程, 王哲, 刘迪, 等. 围压及钢纤维掺量对活性粉末混凝土力学特性的影响[J]. 建筑材料学报, 2018, 21(2): 208 − 215. doi: 10.3969/j.issn.1007-9629.2018.02.006

    WU Licheng, WANG Ze, LIU Di, et al. Effect of confining pressure and steel fiber volume content on mechanical property of reactive powder concrete [J]. Journal of Building Materials, 2018, 21(2): 208 − 215. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.02.006
    [25] RICHARD L J Y, XIONG D X. Ultra-high strength concrete filled composite columns for multi-storey building construction [J]. Advances in Structural Engineering, 2012, 15(9): 1487 − 1504. doi: 10.1260/1369-4332.15.9.1487
    [26] LUO H, WANG W, LIAN S, et al. Stress-strain model for reactive powder concrete confined by steel tube [J]. Journal of Engineering Science and Technology Review, 2017, 10(2): 122 − 131. doi: 10.25103/jestr.102.15
    [27] 过镇海. 混凝土的强度和变形[M]. 北京: 清华大学出版社, 1997.

    GUO Zhenhai. Strength and deformation of concrete, experimental foundation and constitutive relations [M]. Beijing: Tsinghua University Press, 1997. (in Chinese)
    [28] IMRAN I, PANTAZOPOULOU S J. Experimental study of plain concrete under triaxial stress [J]. ACI Materials Journal, 1996, 93(6): 589 − 601.
    [29] CANDAPPA D P, SANJAYAN J G, SETUNGE S. Complete triaxial stress-strain curves of high-strength concrete [J]. Journal of Materials in Civil Engineering, 2001, 13(3): 209 − 215. doi: 10.1061/(ASCE)0899-1561(2001)13:3(209)
    [30] VU X H, MALECOT Y, DAUDEVILIE L, et al. Experimental analysis of concrete behavior under high confinement: effect of the saturation ratio [J]. International Journal of Solids and Structures, 2009, 46(5): 1105 − 1120. doi: 10.1016/j.ijsolstr.2008.10.015
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  120
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-07-09
  • 网络出版日期:  2022-07-14
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回